SBIR-STTR Award

Continued Development of a Novel Next Generation Airborne Wind Energy System for Small and Mid Size Farms
Award last edited on: 3/30/2021

Sponsored Program
SBIR
Awarding Agency
USDA
Total Award Amount
$700,000
Award Phase
2
Solicitation Topic Code
8.12
Principal Investigator
David B Schaefer

Company Information

Ewindsolutions Inc

3800 Sw Cedar Hills Boulevard Suite 260
Beaverton, OR 97005
   (503) 531-9815
   info@ewindsolutions.com
   www.ewindsolutions.com
Location: Single
Congr. District: 01
County: Washington

Phase I

Contract Number: ----------
Start Date: ----    Completed: ----
Phase I year
2015
Phase I Amount
$100,000
eWind is proposing a highly efficient and low-cost wind-energy system for small and mid-sized farms that will produce approximately four times the electricity per year as comparably priced "conventional" wind turbines. This project addresses the USDA priorities of Energy Efficiency and Alternative and Renewable Energy and Agriculturally-related Manufacturing Technology. We directly support Energy Efficiency and Alternative and Renewable Energy since we will enable farms and rural communities to produce electricity from a clean wind source. Our project will also positively impact the fledgling unmanned aerial vehicle (UAV) industry, a manufacturing field that is increasingly used by farmers and agriculture. We also expect that most of the components of the airborne wind-energy system will be made and assembled in the U.S.--a combination that supports Agriculturally-related Manufacturing Technology. Finally, the project addresses the NIFA Societal Challenge Area 2: Climate Change. Adoption of our technology will reduce the overall carbon footprint of farms in fossil fuel-intensive electricity markets by producing clean wind energy. As Oregon farmer and Organically Grown Company (OGC) executive director Andy Westlund confesses, being one of the 800,000 small commercial farmers in America is challenging. Small farms are highly exposed to market risks, tend to focus on commodities, and have profit margins of just 3-4% (Hoppe, MacDonald, & Korb, 2010, p. 6). As such, small price changes of a single crop can have a substantial impact on their financial status (Page, 2011, p. 11). Thus, variable input costs, such as energy, can play havoc with financing annual operating loans (Page, 2011, p. 11). Therefore, reasonable methods of reducing the uncertainty of operating costs and diversifying the income of small farms are desirable--not just to the farmers themselves, but also for maintaining this sector of our agricultural industry. As Andy Westlund and many other small farmers have discovered, the desire to reduce operating costs is the primary factor that motivates farmers to produce their own electricity, usually through solar or wind (Page, 2011). Andy uses recycled solar panels and "primitive" wind turbines to reduce his energy bills. For small farmers, the use of alternative energy simultaneously lowers the operating cost of the farm by reducing the usage of grid electricity and reduces exposure to risk from fluctuating energy prices (Sands & Westcott, 2011; United States Department of Agriculture, 2011). Finally, farmers recognize that generating renewable energy and using fewer fossil fuels reduces dependence on foreign oil, providing greater local and national energy security while reducing the risk of climate change (Sustainable Agriculture Research & Education, 2008, p. 1).However, there are distinct challenges that have kept many small farms from implementing solar and wind renewable energy. The top three barriers that Oregon farmers identified are: 1) up-front project costs, 2) permitting, and 3) troublesome paperwork for the incentive programs (Page, 2011, p. 31). Andy Westlund, for example, had to secure county permits for his twenty-foot wind tower, which is sited just a few steps from his thirty-foot-tall house. Additionally, he admits that the electricity produced doesn't cover the up-front cost of the system. In addition to the general renewable energy challenges Andy has encountered, traditional wind turbines have difficulties specific to farmers that has limited their adoption. The construction of the wind tower can disrupt farming activities and cause soil compaction issues (Linowes, 2013). The tower and its blades can also pose an operating and safety problem for agriculture aerial work and can significantly hamper their access to cropland, in turn detrimentally affecting agricultural production (National Agricultural Aviation Association, 2014). Finally, while the permit and incentive program paperwork

Phase II

Contract Number: ----------
Start Date: ----    Completed: ----
Phase II year
2016
Phase II Amount
$600,000
As Oregon farmer and Organically Grown Company (OGC) executive director Andy Westlund confesses, being one of the 800,000 small commercial farmers in America is challenging (Hoppe, MacDonald, & Korb 2010). Small farms are highly exposed to market risks, tend to focus on commodities, and have profit margins of just 3-4% (Hoppe, MacDonald, & Korb 2010). As such, small price changes of a single crop can have a substantial impact on a farm's financial status (Page 2011). Variable input costs, such as energy, can play havoc with financing annual operating loans (Page 2011). Therefore, reasonable methods of reducing the uncertainty of operating costs and diversifying the income of small farms are desirable--not just for the farmers themselves, but also for maintaining this sector of our agricultural industry. In our market research, we conducted sit down interviews with more than 45 small farmers such as Andy Westlund. Not surprisingly, their desire to reduce operating costs is the primary factor that motivates farmers to produce their own electricity, usually through solar or wind. Andy uses recycled solar panels and primitive wind turbines to reduce his energy bills. For small farmers, the use of alternative energy simultaneously lowers the operating cost of the farm by reducing the usage of grid electricity and reduces exposure to risk from fluctuating energy prices (Sands & Westcott 2011; USDA 2011). Finally, farmers recognize that generating renewable energy and using fewer fossil fuels reduces dependence on foreign oil, providing greater local and national energy security while reducing the risk of climate change (Sustainable Agriculture Research & Education 2008).However, there are distinct challenges that have kept many small farms from implementing solar and wind energy. The top three barriers that Oregon farmers identified are (based on our own and external research): 1) up-front project costs, 2) permitting, and 3) troublesome paperwork for the incentive programs (Page 2011). Andy Westlund, for example, had to secure county permits for his twenty-foot wind tower, which is sited just a few steps from his thirty-foot-tall house. Additionally, he admits that the electricity produced will never cover the up-front cost of the system. In addition to the general renewable energy challenges Andy has encountered, traditional wind turbines have difficulties specific to farmers that have limited their adoption. The construction of the wind tower can disrupt farming activities and cause soil compaction issues (Linowes 2013). The tower and its blades can also pose an operating and safety problem for agriculture aerial work and can significantly hamper access to cropland, in turn detrimentally affecting agricultural production (National Agricultural Aviation Association 2014). Finally, while the permit and incentive program paperwork problems are important, the up-front costs of a large wind turbine can remove any chance of adoption by small farmers. For example, wind farms often use the Vestas V82-1.65 turbine (a 1.6 MW unit), which has an installed cost of approximately $3.3 million ($2,000 per kW capacity) (NREL 2014). This is well outside the financial range of any small farm. Although wind turbines are available in smaller sizes and prices, their efficiency drops quickly with the shorter tower while maintaining a similar level of product complexity. As a result, the system install cost doubles to $4,000 per kW capacity. Additionally, they actually produce only 10-15% of their stated generating capacity, about half the efficiency of utility scale systems (NREL 2014). Thus, a wind tower system that may be affordable to the average small farmer (e.g., tens of thousands of dollars) does not produce enough electricity to make it financially sensible. eWind Solutions sees these obstacles as both a problem and an opportunity. Our intention is to remove these barriers and create affordable wind energy generation systems