SBIR-STTR Award

AI-Aided Tool for Day Zero Selection of High Performing Cells for Biopharma Cell Line Development
Award last edited on: 2/16/2024

Sponsored Program
SBIR
Awarding Agency
NIH : NIGMS
Total Award Amount
$1,764,496
Award Phase
2
Solicitation Topic Code
859
Principal Investigator
Sung Hwan Cho

Company Information

NanoCellect Biomedical Inc (AKA: Nanosort LLC)

7770 Regents Road Unit 113390
San Diego, CA 92122
   (858) 356-5965
   N/A
   www.nanocellect.com
Location: Single
Congr. District: 50
County: San Diego

Phase I

Contract Number: 1R44GM148128-01
Start Date: 8/1/2022    Completed: 7/31/2024
Phase I year
2022
Phase I Amount
$891,540
With the increasing number of protein therapeutic candidates, identifying and isolating single-cell derived colonies is a critical step that is conducted routinely and frequently in monoclonal antibody drug development and manufacture. Single cell technologies in cell line development (CLD) has gone through a few stages: first to place single-cells in wells by limiting dilution, then to use FACS, and more recently, to place high proliferation rate single-cells into wells of a microtiter plate, aided by time lapsed imaging and robotic tools. However, no system to date can identify and isolate those "high performance" cells, judged by cell proliferation rate and drug protein production rate at Day Zero. We propose to develop an innovative tool that can predict cell outgrowth characteristics immediately after genetic modification based on high throughput 2D/3D cell image and artificial intelligence (AI). The benefits of the system include: 1) shorten the time to clone selection from 6 weeks to 2-3 days, 2) increase the number of valuable clones analyzed by 50 times (from 200 to 10,000). These benefits will save drug companies hundreds of millions of dollars, and potentially save thousands of lives in the case of protein-based vaccine production. Our proposed tool possesses several unique capabilities, including (i) a 3D imaging flow cytometer (3D-IFC) to acquire 3D scattering and 2D transmission images (plus 3D images of up to 6 fluorescent colors) of each single cell, (ii) a cell placement module that places cells exiting the 3D IFC for subsequent outgrowth or genetic analysis, and (iii) convolutional neural network to classify individual cells immediately (Day Zero) into high-performance and average performance cells, healthy and diseased cells, cells of different phenotypes, normal and cancer cells, and different cell types. With these capabilities, our proposed system holds the promise of identifying the high performing cells at Day Zero in a unprecedent speed and throughput for CLD. The proposed tool and technique contain the following innovative features: (a) recording of 2D and 3D cell images on-the-fly to produce over 100K high information content single-cell images in < 20 minutes, (b) depositing every single cell exiting the imaging system onto a cell placement platform (CPP) consisting of a microcapillary array on a solid culture medium plate to keep each cell in a friendly and indexed environment, (c) using bioinformatic tools to detect any cell deletion and misplacement errors to assure high accuracy of mapping cell images to cell positions, and (d) using a fused convolutional neural network (f-CNN) from both 2D and 3D labelled and/or label-free images to classify cells. Besides CLD, the proposed tool can benefit drug discovery, personalized medicine, and fundamental biomedical research such as cell type/cell atlas discovery and spatial biology.

Public Health Relevance Statement:
RESEARCH & RELATED Other Project Information 8. PROJECT NARRATIVE We will develop a tool that can detect and predict cell properties using high throughput cell imaging and artificial intelligence to benefit cell line development, cellular therapies, drug discovery, personalized medicine, cell type discovery and spatial biology.

Project Terms:
Antibodies; Monoclonal Antibodies; Clinical Treatment Moab; mAbs; Artificial Intelligence; AI system; Computer Reasoning; Machine Intelligence; Atlases; Biology; Biomedical Research; Cell Line; CellLine; Strains Cell Lines; cultured cell line; Cells; Cell Body; Color; Disease; Disorder; Pharmaceutical Preparations; Drugs; Medication; Pharmaceutic Preparations; drug/agent; Environment; Evolution; indexing; Insulin; Humulin R; Novolin R; Regular Insulin; Phenotype; Production; Proteins; Robotics; Savings; Stress; Technology; Time; Translating; Chinese Hamster Ovary Cell; CHO Cells; Cost Savings; base; Label; improved; Solid; Variant; Variation; Evaluation; Training; Individual; cell mediated therapies; cell-based therapeutic; cell-based therapy; cellular therapy; Cell Therapy; Genetic; Deposit; Deposition; Malignant Cell; cancer cell; Robot; tool; Investigation; Side; cell type; Techniques; System; 3-D; 3D; three dimensional; 3-Dimensional; Cell Growth in Number; Cell Multiplication; Cellular Proliferation; Cell Proliferation; Performance; single cell analysis; fluorescence activated cell sorter; fluorescence activated cell sorter device; Speed; Position; Positioning Attribute; Genetic analyses; genetic analysis; Property; drug development; native protein drug; pharmaceutical protein; protein drug agent; protein-based drug; therapeutic protein; 3-D Imaging; 3D imaging; Three-Dimensional Imaging; drug discovery; drug production; 3-D Images; 3-D image; 3D image; 3D images; Three-Dimensional Image; Pharmaceutical Agent; Pharmaceuticals; Pharmacological Substance; Pharmacologic Substance; Normal Cell; image-based method; imaging method; imaging modality; Detection; Proliferating; Resolution; Stem Cell Research; Vaccine Production; produce vaccines; Validation; transmission process; Transmission; Characteristics; Process; Modification; Development; developmental; cellular imaging; cell imaging; Image; imaging; Advanced Development; design; designing; Outcome; Population; innovation; innovate; innovative; Therapeutic Monoclonal Antibodies; MAb Therapeutics; monoclonal antibody drugs; therapeutic mAbs; Network-based; fluorescence imaging; fluorescent imaging; disease diagnosis; personalized medicine; personalization of treatment; personalized therapy; personalized treatment; imaging system; single cell technology; therapeutic candidate; autoencoder; autoencoding neural network; convolutional neural network; ConvNet; convolutional network; convolutional neural nets; bioinformatics tool; bio-informatics tool; disease prognosis; disease prognostication; artificial intelligence algorithm; AI algorithm

Phase II

Contract Number: 5R44GM148128-02
Start Date: 8/1/2022    Completed: 7/31/2024
Phase II year
2023
Phase II Amount
$872,956
With the increasing number of protein therapeutic candidates, identifying and isolating single-cell derived colonies is a critical step that is conducted routinely and frequently in monoclonal antibody drug development and manufacture. Single cell technologies in cell line development (CLD) has gone through a few stages: first to place single-cells in wells by limiting dilution, then to use FACS, and more recently, to place high proliferation rate single-cells into wells of a microtiter plate, aided by time lapsed imaging and robotic tools. However, no system to date can identify and isolate those "high performance" cells, judged by cell proliferation rate and drug protein production rate at Day Zero. We propose to develop an innovative tool that can predict cell outgrowth characteristics immediately after genetic modification based on high throughput 2D/3D cell image and artificial intelligence (AI). The benefits of the system include: 1) shorten the time to clone selection from 6 weeks to 2-3 days, 2) increase the number of valuable clones analyzed by 50 times (from 200 to 10,000). These benefits will save drug companies hundreds of millions of dollars, and potentially save thousands of lives in the case of protein-based vaccine production. Our proposed tool possesses several unique capabilities, including (i) a 3D imaging flow cytometer (3D-IFC) to acquire 3D scattering and 2D transmission images (plus 3D images of up to 6 fluorescent colors) of each single cell, (ii) a cell placement module that places cells exiting the 3D IFC for subsequent outgrowth or genetic analysis, and (iii) convolutional neural network to classify individual cells immediately (Day Zero) into high-performance and average performance cells, healthy and diseased cells, cells of different phenotypes, normal and cancer cells, and different cell types. With these capabilities, our proposed system holds the promise of identifying the high performing cells at Day Zero in a unprecedent speed and throughput for CLD. The proposed tool and technique contain the following innovative features: (a) recording of 2D and 3D cell images on-the-fly to produce over 100K high information content single-cell images in < 20 minutes, (b) depositing every single cell exiting the imaging system onto a cell placement platform (CPP) consisting of a microcapillary array on a solid culture medium plate to keep each cell in a friendly and indexed environment, (c) using bioinformatic tools to detect any cell deletion and misplacement errors to assure high accuracy of mapping cell images to cell positions, and (d) using a fused convolutional neural network (f-CNN) from both 2D and 3D labelled and/or label-free images to classify cells. Besides CLD, the proposed tool can benefit drug discovery, personalized medicine, and fundamental biomedical research such as cell type/cell atlas discovery and spatial biology.

Public Health Relevance Statement:
RESEARCH & RELATED Other Project Information 8. PROJECT NARRATIVE We will develop a tool that can detect and predict cell properties using high throughput cell imaging and artificial intelligence to benefit cell line development, cellular therapies, drug discovery, personalized medicine, cell type discovery and spatial biology.

Project Terms:
Antibodies; Clinical Treatment Moab; mAbs; monoclonal Abs; Monoclonal Antibodies; Artificial Intelligence; AI system; Computer Reasoning; Machine Intelligence; Atlases; Biology; Biomedical Research; Blood capillaries; capillary; Cell Line; CellLine; Strains Cell Lines; cultured cell line; Cells; Cell Body; Classification; Systematics; Color; Disease; Disorder; Pharmaceutical Preparations; Drugs; Medication; Pharmaceutic Preparations; drug/agent; Environment; Evolution; indexing; Insulin; Humulin R; Novolin R; Regular Insulin; Maps; Phenotype; Production; Proteins; Robotics; Savings; Stress; Technology; Time; Translating; Friends; CHO Cells; Chinese Hamster Ovary Cell; Cost Savings; Label; improved; Solid; Variation; Variant; Evaluation; Training; Individual; cell mediated therapies; cell-based therapeutic; cell-based therapy; cellular therapeutic; cellular therapy; Cell Therapy; Genetic; Deposition; Deposit; cancer cell; Malignant Cell; Robot; tool; Investigation; Side; cell type; Techniques; System; 3-Dimensional; 3-D; 3D; three dimensional; Cell Proliferation; Cell Growth in Number; Cell Multiplication; Cellular Proliferation; Performance; single cell analysis; fluorescence activated cell sorter device; fluorescence activated cell sorter; Speed; Positioning Attribute; Position; genetic analysis; Genetic analyses; Property; drug development; therapeutic protein; native protein drug; pharmaceutical protein; protein drug agent; protein-based drug; Three-Dimensional Imaging; 3-D Imaging; 3D imaging; drug discovery; drug production; 3-D Images; 3-D image; 3D image; 3D images; Three-Dimensional Image; Pharmaceutical Agent; Pharmaceuticals; Pharmacological Substance; pharmaceutical; Pharmacologic Substance; Normal Cell; image-based method; imaging method; imaging modality; Detection; Proliferating; Resolution; resolutions; Stem Cell Research; Vaccine Production; produce vaccines; Validation; validations; transmission process; Transmission; Characteristics; Process; Modification; Development; developmental; cellular imaging; cell imaging; Image; imaging; Advanced Development; designing; design; Outcome; Population; innovate; innovative; innovation; MAb Therapeutics; monoclonal antibody drugs; therapeutic mAbs; Therapeutic Monoclonal Antibodies; fluorescent imaging; fluorescence imaging; disease diagnosis; personalization of treatment; personalized therapy; personalized treatment; personalized medicine; imaging system; single cell technology; therapeutic candidate; autoencoding neural network; autoencoder; ConvNet; convolutional network; convolutional neural nets; convolutional neural network; bio-informatics tool; bioinformatics tool; disease prognosis; disease prognostication; artificial intelligence algorithm; AI algorithm; manufacture