SBIR-STTR Award

Hyperquenching Cryocooler for Biomolecular X-Ray Crystallography
Award last edited on: 1/29/16

Sponsored Program
SBIR
Awarding Agency
NIH : NIGMS
Total Award Amount
$1,184,764
Award Phase
2
Solicitation Topic Code
-----

Principal Investigator
Robert Newman

Company Information

MiTeGen LLC

95 Brown Road Suite 183
Ithaca, NY 14850
   (607) 266-8877
   info@mitegen.com
   www.mitegen.com
Location: Single
Congr. District: 23
County: Tompkins

Phase I

Contract Number: 1R43GM101817-01
Start Date: 6/1/12    Completed: 5/31/14
Phase I year
2012
Phase I Amount
$185,838
The overall goal for this project is to design a compact cryocooling device for fast, reproducible and reliable cryopreservation of protein and virus crystals for X-ray cryocrystallography. X-ray crystallography is the most powerful and widely used tool for determining the molecular structure of proteins, viruses, nucleic acids and biomolecular complexes. Flash-cooling crystals in liquid nitrogen and collecting data at T=100 K simplifies storage, transport and handling, and dramatically increases the amount of X-ray data that can be obtained from each crystal. However, the cooling process itself damages crystals. Many important targets including viruses, membrane proteins and biomolecular complexes can be very difficult to successfully cool. Moreover, current cooling methodologies, which are time-consuming and done by hand, lead to large variability in cooling outcomes and diffraction quality. The proposed device will provide reliable and reproducible cooling at rates up to 100 times greater than in current best practice. This will eliminate crystalline ice formation during cooling and dramatically reduce required cryoprotectant concentrations. This project will focus on designing the device, developing a commercial prototype, evaluating the performance of prototype.

Public Health Relevance:
This project will benefit public health by developing an improved method of conducting X-ray Cryocrystallography. This technique is vital for basic biomedical research and improving its accuracy and efficacy will have broad-scale impacts on developing new drugs and treatments for diseases.

Phase II

Contract Number: 2R44GM101817-02
Start Date: 00/00/00    Completed: 00/00/00
Phase II year
2014
(last award dollars: 2015)
Phase II Amount
$998,926

The overall goal of this project is to design, develop and commercialize compact cryocooling instruments for fast, reproducible and reliable cryopreservation of biomolecular crystals for X-ray cryocrystallography. X-ray crystallography is the most powerful and widely used tool for determining the molecular structures of proteins, viruses, nucleic acids and biomolecular complexes. These structures are critical to modern molecular biology and to the development of pharmaceutical treatments for conditions and diseases. Plunge cooling crystals in liquid nitrogen and collecting data at T=100 K simplifies storage, transport and handling, and dramatically increases the amount of X-ray data that can be obtained from each crystal. However, the cooling process itself damages crystals. Many important targets including viruses, membrane proteins and biomolecular complexes can be very difficult to successfully cool. Moreover, current cooling methodologies, which are time-consuming and done by hand, lead to large variability in cooling outcomes and diffraction quality, and may not accurately capture all salient details of the room/biological temperature molecular structure. The proposed instruments will provide reliable, semi-automated cooling at user adjustable rates, and so provide maximum control and flexibility in designing and implementing cooling protocols. Cooling rates of up to 80,000 K/s, 100 times larger than in current best practice, will eliminate crystalline ice formation during cooling and dramatically reduce required cryoprotectant concentrations. Entry-level, high-throughput and research instruments will be developed using a modular platform, as well as fast-response thin-film temperature sensors needed to measure the large cooling rates these instruments will deliver. Studies of how crystal properties and cooling protocols interact in determining X-ray diffraction outcomes will validate the utility of these instruments and establish protocol for their most effective use. These instruments will significantly improve the efficiency and efficacy of biomolecular crystallography pipelines, and provide new capabilities to academic, government and industrial scientists working to advance our understanding of the molecular mechanisms of life and disease.

Public Health Relevance Statement:


Public Health Relevance:
This technology to be developed in this project will benefit public health by improving the accuracy and resolution with which the molecular structures of proteins and other molecules of life may be determined using X-ray cryocrystallography, and by increasing the efficiency of gene to structure pipelines. Cryocrystallography is a key tool in basi biomedical research, and improving its accuracy and efficacy will have substantial impact on the understanding of disease and on the development of new medications.

Project Terms:
Affect; beamline; Biological; Biological Process; Biomedical Research; cold temperature; commercialization; Complex; Controlled Study; cryogenics; Cryopreservation; Crystallography; Data; design; Development; Disease; egg; Electronics; Ethane; Excision; Film; flexibility; Gases; Genes; Germ Cells; Goals; Government; Hand; Housing; Human; Humidity; Ice; improved; instrument; Lead; Letters; Life; Liquid substance; Market Research; Marketing; Measurement; Measures; Membrane Proteins; Methodology; Methods; Molecular; Molecular Biology; Molecular Medicine; Molecular Structure; Nitrogen; Nucleic Acids; Outcome; Performance; Pharmaceutical Preparations; Pharmacologic Substance; Pharmacology; Phase; Preparation; prevent; Price; Process; Propane; Property; Proteins; Protocols documentation; prototype; public health medicine (field); public health relevance; Research; Resolution; Resources; response; Roentgen Rays; Safety; Sampling; Scientist; sensor; Small Business Innovation Research Grant; Source; Speed (motion); sperm cell; Stem cells; Structure; Students; Surface; Synchrotrons; Technology; Temperature; Testing; Time; tool; Training; Viral Proteins; Virus; Work; X ray diffraction analysis; X-Ray Crystallography; X-Ray Diffraction