SBIR-STTR Award

Photonics Enabled Extreme Bandwidth Wireless Communications Receiver
Award last edited on: 8/25/2022

Sponsored Program
STTR
Awarding Agency
NSF
Total Award Amount
$1,208,002
Award Phase
2
Solicitation Topic Code
ES
Principal Investigator
Kristian D Merkel

Company Information

S2 Corporation

2310 University Way Building 4-1
Bozeman, MT 59715
   (406) 922-0334
   contactus@s2corporation.com
   www.s2corporation.com

Research Institution

----------

Phase I

Contract Number: ----------
Start Date: ----    Completed: ----
Phase I year
2012
Phase I Amount
$150,000
This Small Business Technology Transfer (STTR) Phase I project aims to use and adapt a photonics based extreme bandwidth RF and Microwave spectrum analyzer as a real-time spectral manager for wireless communication systems. The approach is enabled by a spatial-spectral holographic based spectrum analyzer developed by the STTR team that can have instantaneous processing bandwidth of 40 GHz or greater while retaining with high spectral resolution and low latency (<<1 ms) output. This sensor hardware will be applied to wideband, real-time spectral management of wireless communications for operation in environments with new spectral access regulatory models. When combined with low latency digital processing, using specialized digital signal processing hardware such as field programmable gate arrays and appropriate databases and software, the system will allow continuous and simultaneous monitoring of all common wireless communication bands for rapid distribution of channel occupancy data. Project activities include: identifying the physical measurements and spectral signatures needed for wideband spectrum management, implementing specialized computer based algorithms to extract this information for real-time management, and investigating advanced spatial-spectral optical signal processing architectures to automatically recognize wireless signal characteristics such as modulation formats that are beyond the current power spectrum measurement capability. The broader impact/commercial potential of this project includes uses in commercial wireless communication systems, RF test and measurement, defense signal intelligence and communications, regulatory spectrum management, and navigation and geo-location applications. The first commercial impact is to enable dynamic identification and allocation of unused spectral resources in real time, in order to maximize the efficiency and increase the capacity of wireless networks. The large bandwidth and frequency scalability of the spatial-spectral sensor technology could assist the growth of emerging radio communication technologies in existing bands, and in emerging bands such as E-band. Additionally, this technology could assist governmental spectrum regulatory compliance enforcement, which could help to lead to changes in spectrum allocation policy. Increased wireless capacity will help to enhance access to broadband internet access, including to poor or rural areas, where the capital costs of implementing physical infrastructure like fiber optic lines is cost prohibitive (evidenced by the developing world's use of cellular phones over landlines). Beyond communications, RF monitoring has several applications ranging from electronic defense, to navigation and geo-location.

Phase II

Contract Number: ----------
Start Date: ----    Completed: ----
Phase II year
2013
(last award dollars: 2017)
Phase II Amount
$1,058,002

This Small Business Innovation Research (SBIR) Phase II project will adapt a photonics based signal processor to propel applications in extreme bandwidth spread-spectrum wireless communications. The signal processor prototype known as the spatial spectral holographic (S2H) extreme bandwidth analyzer / correlator (EBAC) will function as a correlating receiver for low probability of intercept (covert) and interference immune spread-spectrum communications in any radio frequency/millimeter wave (RF/MMW) band. The Phase I effort proof of concept demonstrations showed correlation and demodulation of >4 GHz bandwidth signals with processing gain exceeding 40 dB. The Phase II project will demonstrate continuous transmission signal generation and receiver processing prototype hardware with the ability to demodulate extreme instantaneous bandwidth up to 20 GHz spread-spectrum communications signals with long duration spreading waveforms up to 1 ms, with high data rates (1-1,000 Mb/s), and flexible frequency coverage exceeding 40 GHz. For particular intensive signal processing functions such as spectral analysis and correlation the S2H EBAC analog signal processor demonstrates higher performance and power efficiency than traditional digital signal processing. The intellectual merit of this project is in the advancement of the core technology and application to new real-world applications. The broader impact/commercial potential of this project include opportunities for major academic and commercial developments in communication technology, spectrum analysis, and spectrum enforcement with wide operating bandwidths from 0.5-40 GHz IBW. Initial commercial market would be for spectrum analysis systems with a customer base in electro-magnetic environment testing, tactical DoD next-generation wideband passive surveillance systems, law enforcement surveillance, and intelligence community spectrum sensing. In wireless communications, this technology has the potential extend the reach of spread spectrum communications to new operational paradigms. Beyond communications, commercial applications include test and measurement systems, magnetic resonance imaging, weather radar, earth mapping, navigation, and spectrum use enforcement (the Federal Communications Commission (FCC) in the U.S.). The enabling technology has commercial, military and intelligence community benefits in the form of geo-location, direction finding, data selection and filtering, navigation, and imaging. With the collaboration with our university partner on this project, we will also support unique applications focused research experience opportunities for graduate and undergraduate students in STEM fields.