SBIR-STTR Award

Ultra Permeable Carbon Nanotube Membranes for Forward Osmosis
Award last edited on: 12/28/2023

Sponsored Program
SBIR
Awarding Agency
NSF
Total Award Amount
$1,265,453
Award Phase
2
Solicitation Topic Code
NM
Principal Investigator
Olgica Bakajin

Company Information

Porifera Inc

3502 Breakwater Avenue
Hayward, CA 94545
   (510) 695-2777
   N/A
   www.poriferanano.com
Location: Single
Congr. District: 15
County: Alameda

Phase I

Contract Number: 0946090
Start Date: 1/1/2010    Completed: 6/30/2010
Phase I year
2009
Phase I Amount
$149,850
This Small Business Innovation Research (SBIR) Phase I project will take advantage of the unique properties of nanomaterials to develop membranes with improved performance tailored for osmosis applications. Osmosis-based industrial processes have a number of advantages over evaporation and pressure-driven membrane processes, including low energy use, low operating temperatures and pressures, and high product concentrations. The project aims to synthesize a new membrane using a composite structure consisting of carbon nanotubes embedded in a polymer matrix. The main factor limiting the industrial use of osmosis-based technologies is a lack of optimized membranes. The unique nanofluidic properties of the proposed nanomaterials-based membrane would make it ideal for osmosis-based applications, offering improvements in all relevant aspects of membrane performance: 1) improved structural integrity, 2) high permeability; 3) chemical stability, and 4) low propensity to foul. The broader societal/commercial impact of this project will be to enable numerous applications in the areas of wastewater treatment, industrial separations, industrial and emergency desalination, and energy generation. The analysis using the planned desalination plant at the city of Santa Cruz as an example demonstrates that the availability of optimized membranes creates real opportunities for making a strong impact on the commercial use of osmosis-based technologies. In the future the nanomaterials-based membranes developed over the course of this project could be deployed on a global scale for osmosis-based applications, making a measurable impact on this $2.6 billion annual market. Applications of these technologies to water purification and energy generation could provide not only commercial but high societal impact, improving the living conditions in the US and worldwide.

Phase II

Contract Number: 1058572
Start Date: 4/1/2011    Completed: 8/31/2014
Phase II year
2011
(last award dollars: 2013)
Phase II Amount
$1,115,603

This Small Business Innovation Research (SBIR) Phase II project will take advantage of the unique properties of carbon-nanotube (CNT) pores to develop membranes that are specifically tailored for forward osmosis (FO) applications. FO processes have a number of advantages over evaporation and pressure-driven membrane processes: low energy cost, low mechanical stresses, and high product concentration. The main problem impeding the widespread use of FO remains the lack of robust optimized FO membranes. CNT membranes are ideal for FO applications as they offer improvements in all relevant membrane characteristics: (1) improved structural integrity; (2) high permeability; (3) robust chemical stability; and (4) low fouling propensity. Most importantly, CNT membranes can be fabricated with sufficient structural support in the active layer to operate with only minimal external reinforcement, which minimizes concentration polarization losses. This project builds on the fabrication and functionalization approaches developed in Phase I, and applies them on a larger scale to achieve the objective of developing membranes with fast flow and high selectivity at reasonable production costs. Performance of the membranes will be benchmarked using laboratory tests that simulate real-world applications. This project will deliver an innovative FO membrane platform that exhibits superior performance and stability in FO applications. The broader impact/commercial potential of this project will be to enable a variety of green technologies such as renewable power generation, wastewater reuse, and energy-efficient desalination. Although FO-based processes are extremely energy efficient, their commercial use has been hampered by the lack of high performance FO membranes. This project should produce two main outcomes. First, it would deliver a solid technical foundation for developing a novel FO membrane platform that would provide a superior commercial alternative to existing FO membrane architectures. Second, the performance advantages of the CNT membranes would open up several applications for commercial development