SBIR-STTR Award

Active Visible and Infrared Management for More Energy Efficient Buildings
Award last edited on: 12/28/2023

Sponsored Program
SBIR
Awarding Agency
NSF
Total Award Amount
$609,442
Award Phase
2
Solicitation Topic Code
IC
Principal Investigator
Kenneth Dean

Company Information

Gamma Dynamics LLC

435 Martin Luther King Drive E Suite A
Cincinnati, OH 45229
   (513) 221-6700
   contact@gammadynamics.net
   www.gammadynamics.net
Location: Single
Congr. District: 01
County: Hamilton

Phase I

Contract Number: 0945339
Start Date: 1/1/2010    Completed: 2/28/2011
Phase I year
2009
Phase I Amount
$149,873
This Small Business Innovation Research (SBIR) Phase I project will demonstrate feasibility of creating surfaces that actively manage solar heat gain by switching between infrared transmittance and reflectivity. The ultimate objective is to develop skylights, windows, and roofs that adapt to seasonal, regional, and diurnal changes in solar flux and heating and cooling requirements. The Phase I objective is to develop electrofluidic pigment materials systems incorporating infrared-reflecting particles and other infrared strategies. The infrared modulation performance of these new materials systems will then be demonstrated in low cost electrofluidic modules. These modules change the optical properties of surfaces by moving pigment from a small area reservoir to full surface coverage in a similar manner to the way squids change their skin color. The innovation in this work is the development an entirely new materials system and method for managing near-infrared light over a large surface area. The broader impact/commercial potential of this project is to improve the energy efficiency of buildings. U.S. building energy consumption (40% of total U.S. Energy Consumption) can be reduced significantly by maximizing sunlight for lighting, while effectively managing solar heat gain. Current passive technologies (windows, insulation, paint, etc.) do not readily adapt to seasonal, regional, and diurnal changes in solar flux and heating and cooling requirements. By empowering buildings to actively manage solar heat gain, U.S. energy consumption can be reduced by more than 1 quadrillion BTU per year, while adding minimal cost to building infrastructure. There is also a large commercialization opportunity in selling active skylights, windows, roof tiles, etc. through partnerships with existing manufacturers

Phase II

Contract Number: 1127463
Start Date: 12/15/2011    Completed: 11/30/2013
Phase II year
2012
Phase II Amount
$459,569
This Small Business Innovation Research (SBIR) Phase II program will develop electrofluidic smart window modules with unique capabilities for managing infrared as well as visible light. As a result, these windows will better manage solar heat gain by switching between infrared transmittance and reflectivity. The ultimate objective is to develop skylights, windows, and roofs that adapt to seasonal, regional, and diurnal changes in solar flux and heating and cooling requirements. These window modules change the optical properties of surfaces by moving pigment from a small area reservoir to full surface coverage in a similar manner to the way squids change their skin color. The Phase I program developed pigmented fluids with engineering infrared responses, and demonstrated proof-of-concept functioning devices operating with these fluids. The Phase II project will develop the designs, processing strategies, and materials for full smart windows modules. Windows modules will then be built, measured, and directly compared with status quo windows. The innovation in this work is the development and realization of entirely new materials and devices for managing near-infrared light over a large surface area. The broader impact/commercial potential of this smart window technology is empowering buildings to actively manage solar heat gain to improve energy efficiency, which is a truly green solution. U.S. building energy consumption (40% of total U.S. Energy Consumption) can be reduced significantly with smart windows and smart skylights that maximize sunlight for lighting, while effectively managing solar heat gain, including near-infrared energy. Current passive technologies for windows do not readily adapt to seasonal, regional, and diurnal changes in solar flux and heating and cooling requirements. By empowering buildings to adapt solar heat gain to daily local needs, U.S. energy consumption could be reduced by as much as one quadrillion BTU per year, while adding minimal cost to building infrastructure. The commercialization path for this technology is through the Advanced Flat Glass segment of the Flat Glass market. In addition, this program will enhance scientific innovation at the Ohio Center for Microfluidic Innovation, a cluster for commercializing micro/electrofluidic technology.