SBIR-STTR Award

Shape Variations in the Development of Miniature Micropumps
Award last edited on: 3/3/2014

Sponsored Program
SBIR
Awarding Agency
NSF
Total Award Amount
$991,010
Award Phase
2
Solicitation Topic Code
-----

Principal Investigator
Forrest Payne

Company Information

SFC Fluidics Inc (AKA: SFC~SFC Fluidics LLC)

534 West Research Center Boulevard Suite 260
Fayetteville, AR 72701
   (479) 527-6810
   info@sfc-fluidics.com
   www.sfc-fluidics.com
Location: Single
Congr. District: 03
County: Washingto

Phase I

Contract Number: ----------
Start Date: ----    Completed: ----
Phase I year
2007
Phase I Amount
$100,000
This Small Business Innovation Research Phase I research proposal targets technical innovations that will advance the implementation of micro-scale bioassays, lab-on-a-chip applications, and electrospray mass spectrometry approaches to proteomics. It is proposed to design and fabricate miniature, stand-alone non-mechanical pumps with a diversity of shapes. Each micropump will have a footprint of less than 1 in2 and be capable of controlled, precise flow rates from nL/min to microL/min. The non-mechanical nature and operating principles that govern the ePump afford an unusual degree of freedom in pump design, extending to include a wide range of pump shapes and sizes. Delivering pulse-free flow, this new type of pump will be compatible with a broad range of assay solvents and solutions. The target is a miniature pump that can be implemented in a range of shapes that can be readily adapted to the constrained spaces within OEM assay systems. Market opportunities for the proposed stand-alone pumps exist in research and commercial chromatography, microfluidics, proteomics, and sample introduction. Additional opportunities are represented for drug delivery and IV therapy. The unique miniature pumps will advance biotechnology on a number of fronts including lab-on-a-chip, micro-total analysis systems, and point-of-care devices. A direct impact on public health will be realized by increased portability and general accessibility of diagnostic and measurement systems

Phase II

Contract Number: ----------
Start Date: ----    Completed: ----
Phase II year
2008
Phase II Amount
$891,010
This Small Business Innovation Research (SBIR) Phase II research project focuses on the development of a product line of miniature pumping systems for the controlled delivery of fluids in ultra-low flow rate range (nanoliters to microliters per minute). This line of micropump systems will provide pulse-free flow and controlled micro-volume dispensing in this challenging low volume regime. The non-mechanical nature and operating principles of this pump afford an unusual degree of freedom in pump design. The ability to tailor the shape and size of the micropump to specific applications can be very valuable, particularly in small devices where the available space is significantly constrained (for example, point-of-care devices, portable chemical and biological analysis systems, and micro-dosing devices). There is a growing diversity of chemical and biological analyses that are taking place within small chips, as well as in the rising demand for ultra-small dosing systems. Such analyses are continuing to shrink in size and measurements that have conventionally been performed in a laboratory and are now being adapted to handheld devices. These micro-analysis systems can provide immediate results without waiting for laboratory analyses. For example, the analysis of blood samples is being adapted to small devices, so important results are available at the point-of-care. Likewise, the desire is growing for small, portable dosing systems for animal studies and for human medications (like insulin and chronic pain management). All of these applications require micropumps for the controlled delivery of compounds. Fundamental engineering constraints mean that conventional mechanical pumps cannot be simply decreased in size to meet this challenge. These miniature non-mechanical pumps require very little power, can be controlled to deliver at constant flow rate or specific dispensing volumes, and offer the pulse-less flow that is not accessible by other pumps. This provides a significant market opportunity in the liquid pumping market (roughly $160 million presently), into the animal dosing (valued at approximately $90 million per year) and human drug delivery (valued at $80 billion presently) markets