SBIR-STTR Award

High-Throughput, Multiplexed Characterization and Modeling of Antibody:Antigen Binding, with Application to Hsv
Award last edited on: 5/15/2017

Sponsored Program
SBIR
Awarding Agency
NIH : NIAID
Total Award Amount
$299,999
Award Phase
1
Solicitation Topic Code
-----

Principal Investigator
Benjamin Delbert Brooks

Company Information

Carterra Inc (AKA: Wasatch Microfluidics Inc)

825 North 300 West Suite Ne 129
North Salt Lake, UT 84103
   (801) 532-4486
   josh@microfl.com
   www.microfl.com
Location: Single
Congr. District: 02
County: Salt Lake

Phase I

Contract Number: ----------
Start Date: ----    Completed: ----
Phase I year
2017
Phase I Amount
$299,999
All therapeutic antibodies and most vaccines critically depend on the ability of antibodies to specifically recognize particular antigens; consequently, detailed characterization of antibody:antigen binding can provide invaluable information to understand and guide development. Unfortunately, due to the time and expense required, atomic resolution structure determination is typically used sparingly, late in a development process or for a small number of different antibodies or antigen variants. We seek to enable earlier and larger-scale, but still detailed, characterization and modeling of antibody:antigen binding, applicable to panels of antibodies that could result from screening polyclonal samples or engineered libraries, along with panels of antigens that could result from attempts to understand and account for diversity across populations. While not at atomic resolution, our approach will still allow residue-level localization of specific epitopes for specific antibodies, as well as group-level identification of functionally similar antibodies and their associated binding regions on the antigen. The approach will be enabled by a unique integration of a powerful experimental platform, the high-throughput multiplexed Wasatch Surface Plasmon Resonance (SPR), with powerful computational methods to design and analyze binding experiments. Studies of glycoprotein D (gD) of herpes simplex virus (HSV) will provide a solid foundation for developing, testing, and applying the technology to better understand critical differences across antibodies and antigenic variation. Ultimately, the approaches developed here will allow researchers to leverage extensive epitope characterization data generated with Wasatch's SPR instrument in order to broadly and deeply characterize the basis for antibody:antigen recognition in wide-ranging vaccine and therapeutic antibody discovery and development programs.

Public Health Relevance Statement:
Project Narrative Detailed characterization of antibody:antigen binding is fundamental to understanding and potentially improving mechanisms of action of biotherapeutics and vaccines. Here, in order to support such characterization for large panels of related antibodies and antigen variants, computational design and analysis methods will be integrated with a high-throughput multiplexed experimental platform, enabling the overall grouping of antibodies by binding preferences as well as the detailed localization of particular antibody epitopes. By enabling a rich analysis at much higher throughput than traditional structural studies, this approach promises to better drive discovery and development of vaccines and therapeutic antibodies.

Project Terms:
abstracting; Address; Alanine; Antibodies; antigen antibody binding; antigen binding; Antigenic Variation; Antigens; base; Binding; Biological; Biological Response Modifier Therapy; Blocking Antibodies; Clinical; Communities; Computational Technique; Computer Simulation; Computing Methodologies; Crystallography; Data; Data Analyses; design; Development; Engineering; Epitopes; experience; experimental study; Failure; Foundations; Glycoproteins; Grouping; Growth; Health; Hot Spot; improved; innovation; insight; Institutes; instrument; interest; Kinetics; Letters; Libraries; Maps; Measurement; Mediating; Methodology; Methods; Microfluidics; model design; Modeling; Molecular; neutralizing antibody; next generation sequencing; novel strategies; Pattern; Phase; polyclonal antibody; Population; Population Heterogeneity; Positioning Attribute; preference; Process; Program Development; Research Personnel; Resolution; Sampling; scale up; Scanning; Screening Result; Serotyping; Simplexvirus; Solid; Structure; Surface Plasmon Resonance; System; Techniques; Technology; Testing; Therapeutic antibodies; Time; vaccine development; vaccine trial; Vaccines; Variant

Phase II

Contract Number: ----------
Start Date: ----    Completed: ----
Phase II year
----
Phase II Amount
----