SBIR-STTR Award

4-Channel Multimodal Ultrathin-Flexible SFE for cancer diagnosis and therapy
Award last edited on: 9/21/17

Sponsored Program
SBIR
Awarding Agency
NIH : NCI
Total Award Amount
$300,000
Award Phase
1
Solicitation Topic Code
102
Principal Investigator
Gerald McMorrow

Company Information

Veravanti Inc

2260 152nd Avenue Ne Suite 200
Redmond, WA 98052
   (425) 201-6070
   info@veravanti.com
   www.veravanti.com
Location: Single
Congr. District: 01
County: King

Phase I

Contract Number: 1R43CA211086-01A1
Start Date: 5/15/17    Completed: 7/31/18
Phase I year
2017
Phase I Amount
$300,000
4-channel multimodal ultrathin-flexible SFE for cancer diagnosis and therapy Minimally-invasive optical imaging is being advanced by molecular probes that enhance contrast using fluorescence. The applications in cancer imaging are very broad, ranging from early diagnosis of cancer to the guiding of interventions, such as surgery. The high-sensitivity afforded by wide-field fluorescence imaging using scanning laser light is being developed for these broad applications. The platform technology is the SFE (Scanning Fiber Endoscope), which places a sub-mm scanner at the tip of a highly flexible scope. Because several different laser wavelengths can be mixed and scanned together, full-color reflectance imaging can be combined with fluorescence imaging in a 4-channel multimodal SFE. The goal of this project is to develop the first prototype VerAvanti 4-channel multimodal SFE (mmSFE) for cancer imaging applications. VerAvanti is a start-up medical device company located in Redmond, WA, founded and staffed with engineering graduates from the University of Washington (UW), where the SFE was invented and tested in pilot clinical trials. VerAvanti has exclusive license to commercialize the SFE technology for medical imaging and a 3-channel full color SFE (using red, green, and blue reflectance) is already in pilot manufacturing and testing. This project will rapidly translate the mmSFE technology from its origins at UW into a working prototype by adding near infrared (NIR) fluorescence as the 4th imaging channel. Importantly the VerAvanti mmSFE will be designed for efficient manufacturing in a modular format with reduced part numbers. This will allow two very different cancer imaging applications to be commercially available for upcoming clinical trials that rely on molecular imaging of cancer. The first application is fluorescence image-guided surgery, specifically brain tumors that are labeled with BLZ- 100, a peptide probe with a NIR dye to highlight cancer cells, especially at the margin with healthy brain tissue. The ultrathin and flexible mmSFE will allow less invasive surgeries and allow the guided tool to avoid the most important areas to be left intact. VerAvanti will design and develop the prototype to specified benchmarks which will be tested at UW using realistic phantoms and feedback from clinicians. The challenge for VerAvanti is extending from 3 to 4 laser wavelengths across the visible to NIR with a clinical interface that neurosurgeons prefer. The second application is providing 3 fluorescence imaging channels concurrently with grayscale reflectance imaging for the purpose of making an accurate cancer diagnosis in the pancreatobiliary ducts that are often too small to obtain sufficient biopsy tissue. Feasibility of the modular mmSFE design using 1 to 3 fluorescence imaging channels (and reflectance for situational awareness) in a 1.5-mm diameter flexible scope will be determined, but only the mmSFE for the first application will be prototyped and neurosurgeon tested.

Public Health Relevance Statement:
Project Narrative This SFE endoscope technology was developed by the University of Washington and licensed to VerAvanti for rapidly bringing to the clinic as a commercial product. This project in collaboration with the University of Washington inventors will demonstrate the technical feasibility that this multimodal imaging technology offers in more accurately guiding cancer diagnosis and surgically removing tumors.

Project Terms:
3D Print; Adult; Area; Awareness; base; Benchmarking; Binding; Biopsy; Brain; Brain Neoplasms; brain surgery; brain tissue; brain tumor resection; Caliber; cancer cell; cancer diagnosis; cancer imaging; Cancer Intervention; cancer therapy; Chlorotoxin; Clinic; Clinical; clinical application; Clinical Trials; Collaborations; Color; commercialization; Computer software; contrast enhanced; cost; Custom; design; Detection; detector; Development; Duct (organ) structure; Ductal; Dyes; Early Diagnosis; Endoscopes; Engineering; Esophagus; Excision; Feedback; Fiber; flexibility; Fluorescence; fluorescence imaging; Future; gastrointestinal; Goals; Image; image guided; Image-Guided Surgery; Imaging technology; Incentives; Indocyanine Green; Intervention; Knowledge; Label; Lasers; Left; Letters; Licensing; Life; Light; Lighting; Malignant neoplasm of gastrointestinal tract; Malignant Neoplasms; Medical Device; Medical Imaging; Medical Technology; Michigan; minimally invasive; Molecular; molecular imaging; Molecular Probes; Multi-Institutional Clinical Trial; Multimodal Imaging; multimodality; Near-infrared optical imaging; Neurologic Deficit; Neurosurgeon; neurosurgery; Operative Surgical Procedures; optical fiber; optical imaging; Optics; Patients; Pattern; Peptides; Performance; Permeability; photon-counting detector; Photons; preference; prototype; Research; Research Personnel; Residual Tumors; Resolution; Safety; Scanning; Small Business Innovation Research Grant; Software Design; Solid Neoplasm; Specificity; System; Technology; Testing; Tissues; To specify; tool; Topical application; touchscreen; Translating; tumor; Tumor Tissue; Universities; Visible Radiation; Washington

Phase II

Contract Number: ----------
Start Date: 00/00/00    Completed: 00/00/00
Phase II year
----
Phase II Amount
----