SBIR-STTR Award

Commercialization of a Preclinical Magnetic Particle Imaging System with Sub-Millimeter Resolution, Nano-Molar Sensitivity, and Integrated Ct
Award last edited on: 5/15/2020

Sponsored Program
SBIR
Awarding Agency
NIH : NIBIB
Total Award Amount
$2,216,071
Award Phase
2
Solicitation Topic Code
-----

Principal Investigator
Patrick Goodwill

Company Information

Magnetic Insight Inc (AKA: MPI)

1010 Atlantic Avenue Suite 100
Alameda, CA 94501
   (510) 291-1200
   info@magneticinsight.com
   www.magneticinsight.com
Location: Single
Congr. District: 13
County: Alameda

Phase I

Contract Number: 1R43EB020463-01
Start Date: 5/1/2015    Completed: 4/30/2017
Phase I year
2015
Phase I Amount
$348,285
The two dominant preclinical molecular imaging techniques, optical imaging and nuclear imaging, have technical limitations that hamper their use in applications requiring high resolution, longitudinal tracer imaging with absolute quantitation. We are developing a new molecular imaging modality, Magnetic Particle Imaging (MPI), which does not have these limitations and is capable of: nanomolar sensitivity, absolute quantitation of a tracer, resolution independent of depth, and monitoring a stable tracer for weeks to months. These capabilities make MPI complementary to existing molecular imaging techniques and give scientists a versatile new tool when imaging cancer, tracking therapeutic and immune cells, and imaging the cardiovascular system. MPI is best compared with nuclear medicine, in that both modalities "see" only the injected tracer, both modalities can "see" right through background tissue, and both modalities are translatable. The MPI technique works by directly detecting the nonlinear magnetization of iron-oxide tracers using low-frequency magnetic fields. MPI's method of direct detection is exquisitely sensitive and we have already demonstrated nanomolar sensitivities in prototype systems. Indeed, the theoretical sensitivity limit of MPI may be as low as a single tagged cell in a voxel. MPI is unrelated to Magnetic Resonance Imaging (MRI), and MPI scans cannot be acquired using a MRI imager. This project aims to develop the first MPI system tailored for pre-clinical researchers working with mouse and rat models. The proposed system will be the world's highest sensitivity and highest resolution tomographic MPI scanner, as well as the first MPI system with integrated CT. First, we will build a high strength field free line magnetic field gradient mounted to a rotating gantry o enable tomographic MPI imaging. We will then integrate CT to enable acquisition of a tissue reference image. Last, we will test the imager on phantoms and post mortem animals.

Public Health Relevance Statement:


Public Health Relevance:
Magnetic Particle Imaging (MPI) is a new imaging modality whose unique contrast, sensitivity, and tracer longevity solves several limitations of current pre-clinical imaging modalities. Until now, these limitations have slowed researchers developing treatments for diseases such as heart failure and cancer, among others. Here we propose to commercialize the first MPI/CT imager tailored for pre-clinical researchers working with mouse and rat models.

Project Terms:
Anatomy; Angiography; Animals; Biological Sciences; Biomedical Engineering; Businesses; California; cancer imaging; Cardiovascular system; Cells; cellular imaging; Collaborations; commercialization; computer science; cone-beam computed tomography; Contrast Sensitivity; design; design and construction; Detection; detector; Discipline of Nuclear Medicine; Disease; Electrical Engineering; Engineering; Frequencies (time pattern); Goals; Grant; Heart failure; Image; imaging modality; Imaging Techniques; Imaging technology; Immune; in vivo; innovation; Iron; iron oxide; Lead; Longevity; Low-Dose Spiral CT; magnetic field; Magnetic Resonance Imaging; Magnetism; Malignant Neoplasms; member; Methods; millimeter; Modality; Modeling; molecular imaging; Monitor; Mus; nano; Noise; Nuclear; optic imaging; particle; Penetration; PET/CT scan; Phase; Physics; pre-clinical; pre-clinical research; professor; programs; prototype; public health relevance; Rattus; Research Personnel; Resolution; Scanning; Scientist; Source; Staging; Stem cells; System; Testing; Therapeutic; Tissues; Tomography, Emission-Computed, Single-Photon; tool; Tracer; Universities; Water; Work; X-Ray Computed Tomography

Phase II

Contract Number: 5R43EB020463-02
Start Date: 5/1/2015    Completed: 4/30/2017
Phase II year
2016
(last award dollars: 2019)
Phase II Amount
$1,867,786

The two dominant preclinical molecular imaging techniques, optical imaging and nuclear imaging, have technical limitations that hamper their use in applications requiring high resolution, longitudinal tracer imaging with absolute quantitation. We are developing a new molecular imaging modality, Magnetic Particle Imaging (MPI), which does not have these limitations and is capable of: nanomolar sensitivity, absolute quantitation of a tracer, resolution independent of depth, and monitoring a stable tracer for weeks to months. These capabilities make MPI complementary to existing molecular imaging techniques and give scientists a versatile new tool when imaging cancer, tracking therapeutic and immune cells, and imaging the cardiovascular system. MPI is best compared with nuclear medicine, in that both modalities "see" only the injected tracer, both modalities can "see" right through background tissue, and both modalities are translatable. The MPI technique works by directly detecting the nonlinear magnetization of iron-oxide tracers using low-frequency magnetic fields. MPI's method of direct detection is exquisitely sensitive and we have already demonstrated nanomolar sensitivities in prototype systems. Indeed, the theoretical sensitivity limit of MPI may be as low as a single tagged cell in a voxel. MPI is unrelated to Magnetic Resonance Imaging (MRI), and MPI scans cannot be acquired using a MRI imager. This project aims to develop the first MPI system tailored for pre-clinical researchers working with mouse and rat models. The proposed system will be the world's highest sensitivity and highest resolution tomographic MPI scanner, as well as the first MPI system with integrated CT. First, we will build a high strength field free line magnetic field gradient mounted to a rotating gantry o enable tomographic MPI imaging. We will then integrate CT to enable acquisition of a tissue reference image. Last, we will test the imager on phantoms and post mortem animals.

Public Health Relevance Statement:


Public Health Relevance:
Magnetic Particle Imaging (MPI) is a new imaging modality whose unique contrast, sensitivity, and tracer longevity solves several limitations of current pre-clinical imaging modalities. Until now, these limitations have slowed researchers developing treatments for diseases such as heart failure and cancer, among others. Here we propose to commercialize the first MPI/CT imager tailored for pre-clinical researchers working with mouse and rat models.

NIH Spending Category:
Bioengineering; Diagnostic Radiology

Project Terms:
Anatomy; Angiography; animal imaging; Animals; Biological Sciences; Biomedical Engineering; Businesses; California; cancer imaging; Cardiovascular system; Cells; cellular imaging; Collaborations; commercialization; computer science; cone-beam computed tomography; Contrast Sensitivity; design; design and construction; Detection; detector; Discipline of Nuclear Medicine; Disease; Electrical Engineering; Engineering; Frequencies; Goals; Grant; Health; Heart failure; Image; imaging modality; imaging system; Imaging Techniques; Imaging technology; Immune; in vivo; innovation; Iron; iron oxide; Lead; Longevity; low-dose spiral CT; magnetic field; Magnetic Resonance Imaging; Magnetism; Malignant Neoplasms; member; Methods; millimeter; Modality; Modeling; molecular imaging; Monitor; mouse model; Mus; nanomolar; Noise; Nuclear; optical imaging; particle; Penetration; PET/CT scan; Phase; Physics; pre-clinical; pre-clinical research; professor; programs; prototype; Rattus; Research Personnel; Resolution; Scanning; Scientist; single photon emission computed tomography; Source; Staging; Stem cells; System; Testing; Therapeutic; Tissues; tool; Tracer; Universities; Water; Work; X-Ray Computed Tomography