SBIR-STTR Award

C/EBP-Beta Peptides for the Treatment of Lung Injury and Fibrosis
Award last edited on: 3/29/19

Sponsored Program
STTR
Awarding Agency
NIH : NHLBI
Total Award Amount
$311,803
Award Phase
1
Solicitation Topic Code
-----

Principal Investigator
Mario Chojkier

Company Information

Xfibra LLC

935 Jeffrey Road
Del Mar, CA 92014
   (858) 864-3588
   N/A
   N/A

Research Institution

Veterans Medical Research Foundation

Phase I

Contract Number: 1R41HL122022-01A1
Start Date: 9/1/14    Completed: 8/31/15
Phase I year
2014
Phase I Amount
$311,803
Activation of lung myofibroblasts (LMF) is responsible for the development of lung fibrosis in chronic lung diseases of all causes and remarkably, LMF clearance by apoptosis may prevent development of lung fibrosis and lung injury, and possibly allow recovery from reversal of lung fibrosis. There is full agreement among tissue fibrosis experts that inhibiting o reversing myofibroblast activation (the therapeutic target) is critical fr the treatment of lung fibrosis. Both preventing progression of lung fibrosis as well as possibly, regression of lung fibrosis in spite of continued lung injury, as we clearly documented in our pre-clinical studies, are considered important clinical targets for patients with chronic lung disease and lung fibrosis. Finally, blocking the progression of lung fibrosis may decrease development of lung cancer. The basis for our Research and Development is the development of novel humanized C/EBP¿ peptoids (not previously reported). We created a library using analog synthesis to improve potential pitfalls for human therapy. We have performed in a step-wise manner assays to select the safest and most efficient 'humanized' peptoids (including apoptosis assays in activated primary human myofibroblasts; cell-free caspase 8 activation assays; lung injury/fibrogenesis models; toxicology assays in mice). We have developed novel and effective anti-fibrotic peptoids with expected decreased immunogenicity and improved stability and bioavailability during clinical trials. The proposed compounds markedly inhibit activation of human and mouse myofibroblast in culture. These compounds were not toxic in the preliminary toxicology studies, including pilot toxicogenomics, to mice at least at 100-fold the therapeutic dose. The aims that are proposed for completion by this STTR are: Chronic lung fibrogenesis assays in mouse models; Pharmacokinetics; In Vitro Metabolic Stability Studies; Pharmacokinetics; Potential off-target liabilities for Molecular Toxicology and Exploratory Toxicology. There is no medication for the treatment or prevention of lung fibrosis. Completion of these tasks for the proposed compounds will allow us proceeding with a Phase-2 STTR and clinical development in patients with lung fibrosis.

Thesaurus Terms:
Accounting;Agreement;Analog;Animals;Apoptosis;Apoptotic;Area;Autopsy;Base;Biological Assay;Biological Availability;Bleomycin;Body Weight Decreased;Breathing;Bronchoalveolar Lavage;Caspase-8;Ccaat-Enhancer-Binding Proteins;Cell Death;Cells;Chest;Chronic;Chronic Bronchitis;Chronic Lung Disease;Cicatrix;Clinical;Clinical Trials;Cytokine;Development;Dna Damage;Dose;Drug Kinetics;Effective Therapy;Endothelial Cells;Epithelial Cells;Excretory Function;Fibrogenesis;Fibrosis;Fluorescein-5-Isothiocyanate;Functional Disorder;Future;Genes;Genus Hippocampus;Glycolysis;Hamman-Rich Syndrome;Heat-Shock Response;Human;Hypoxia;Immunogenicity;Improved;In Vitro;In Vivo;Inflammation;Inflammatory Marker;Inflammatory Response;Injury;Intravenous;Kidney;Knowledge;Lead;Libraries;Lung;Lung Development;Lung Diseases;Lung Injury;Malignant Breast Neoplasm;Malignant Neoplasm Of Lung;Maximum Tolerated Dose;Measurable;Measurement;Measures;Medical;Metabolic;Metabolic Biotransformation;Metabolism;Microsomes;Mitochondria;Modeling;Molecular Profiling;Molecular Toxicology;Morbidity - Disease Rate;Mortality Vital Statistics;Mouse Model;Mus;Myofibroblast;Novel;Oral Administration;Oxidative Stress;Oxygen;Oxygen Consumption;Pathway Interactions;Patients;Peptides;Peptoids;Pharmaceutical Preparations;Pharmacodynamics;Phase;Phosphorylation;Plasma;Play;Population;Preclinical Study;Prevent;Prevention;Procedures;Proteins;Protons;Public Health Relevance;Pulmonary Emphysema;Radiation Therapy;Recovery;Relative (Related Person);Reporting;Research And Development;Respiration;Response;Reverse Transcriptase Polymerase Chain Reaction;Role;Route;Schedule;Scleroderma;Sex;Skin;Small Business Technology Transfer Research;Stress;Testing;Therapeutic;Therapeutic Agents;Therapeutic Target;Time;Tissues;Toxic Effect;Toxicogenomics;Toxicokinetics;Toxicology;Urinary;Work;Xenobiotic Metabolism;

Phase II

Contract Number: ----------
Start Date: 00/00/00    Completed: 00/00/00
Phase II year
----
Phase II Amount
----