SBIR-STTR Award

Increased Therapeutic Potential Of Migrating Neural Stem Cells &Asc101 Treatment
Award last edited on: 7/25/13

Sponsored Program
SBIR
Awarding Agency
NIH : NINDS
Total Award Amount
$335,440
Award Phase
1
Solicitation Topic Code
-----

Principal Investigator
Leonard P Miller

Company Information

Targazyme Inc (AKA: American Stem Cell Inc)

2100 Palomar Airport Road Suite 214-19
Carlsbad, CA 92011
Location: Multiple
Congr. District: 49
County: San Diego

Phase I

Contract Number: 1R43NS079027-01A1
Start Date: 1/1/13    Completed: 12/31/13
Phase I year
2013
Phase I Amount
$335,440
Multiple sclerosis (MS) affects 1 in 1000 individuals in the US and is characterized by progressive sensory, motor and cognitive impairments. These functional deficits are linked to inflammatory attacks on myelin, oligodendrocytes, and axons. Therapeutic strategies that promote remyelination, protect against inflammation, and protect axons have the potential to prevent and even improve functional declines in MS patients. One therapeutic approach is to use neural stem cells (NSCs), which are able to rescue endangered host neurons and glial cells by providing trophic support, detoxifying the microenvironment, mobilizing endogenous progenitors, triggering self-repair mechanisms, exerting anti-inflammatory and anti-scarring actions, and promoting angiogenesis. Each of these effects has the potential to improve outcomes in MS patients. Intravenous administration of NSCs is an alternative to direct injections into the CNS. This approach is feasible because systemically administered NSCs can circumvent the blood-brain barrier (BBB) and localize to a site of intracranial pathology. However, one limitation of this approach is that NSCs are extremely inefficient (<5% cells) at homing, even to an injured site in the brain. We have found that the molecules mediating homing in NSCs are defective, which contributes to the poor efficiency of NSC homing. Our preliminary in vitro data show that our proprietary technology, ASC-101, corrects this natural deficiency and improves interactions of NSCs under conditions of physiological shear stress. This Phase I SBIR grant submission is designed to generate a proof-of-principle that ex vivo correction of NSC homing molecules will improve their homing to MS lesions in a mouse model of MS. In Aim 1 we will complete the production of research-grade ASC-101 for use in experiments under this grant. In Aim 2, ASC- 101-treated NSCs will be intravenously injected in experimental autoimmune encephalomyelitis (EAE) mice and we will evaluate their migration to the lesions, differentiation and overall efficacy. EAE is a widely accepted and utilized animal model of MS. If successful, this project will provide the basis for further testing ASC-101 technology in additional animal models of MS using NSCs.

Public Health Relevance Statement:


Public Health Relevance:
Neural stem cells (NSCs) have the potential for treatment of multiple sclerosis (MS). While intravenous (iv) administration of NSCs is preferable over direct injections into the CNS, this approach is limited due to an observed low homing efficiency of NSCs. ASC-101 technology from America Stem Cell improves the interactions of NSCs with vasculature and, thus, has the potential to enhance homing of iv administered NSCs and to improve the overall efficacy of NSC-based cellular therapy.

Project Terms:
Affect; Americas; angiogenesis; Animal Model; Animals; Anti-inflammatory; Anti-Inflammatory Agents; Applications Grants; Astrocytes; Axon; base; Biological Assay; Blood - brain barrier anatomy; Brain; Cell surface; Cells; Cicatrix; Clinical; Clinical Trials; Cyclic GMP; Data; Demyelinating Diseases; design; Disease; efficacy testing; enzyme substrate; Enzymes; Experimental Autoimmune Encephalomyelitis; Florida; Fluorescence; functional decline; Funding; Glial Fibrillary Acidic Protein; Goals; Grant; Guanosine Diphosphate Fucose; High Pressure Liquid Chromatography; Homing; immunocytochemistry; Impaired cognition; improved; In Vitro; in vivo; Individual; Inflammation; Inflammatory; Injection of therapeutic agent; injured; Intravenous; intravenous administration; Investigational New Drug Application; Label; Lesion; Ligands; Link; Manufacturer Name; Mediating; Membrane Glycoproteins; migration; Modeling; Modification; Monitor; motor impairment; mouse model; Multiple Sclerosis; Multiple Sclerosis Lesions; Mus; Myelin; Myelin Basic Proteins; nerve stem cell; neurofilament; Neuroglia; Neurons; nonhuman primate; novel; Oligodendroglia; Oregon; Outcome; Pathology; Patients; PDGFRB gene; Phase; Physiological; Platelet-Derived Growth Factor alpha Receptor; Positioning Attribute; prevent; Primates; Procedures; Production; progenitor; public health relevance; Reagent; relating to nervous system; remyelination; repaired; Research; research study; Safety; Schedule; Selectins; Sensory; shear stress; Site; Slice; Small Business Innovation Research Grant; Spinal Cord; Staining method; Stains; stem cell differentiation; Stem cells; Subfamily lentivirinae; T-Lymphocyte; Tail; Technology; Testing; Therapeutic; Tissues; Toxicology; Trypan Blue; Veins

Phase II

Contract Number: ----------
Start Date: 00/00/00    Completed: 00/00/00
Phase II year
----
Phase II Amount
----