SBIR-STTR Award

The Development of a Low-Cost, Quantitative Skin Imaging Camera
Award last edited on: 2/22/2019

Sponsored Program
SBIR
Awarding Agency
NIH : NIA
Total Award Amount
$2,187,736
Award Phase
2
Solicitation Topic Code
-----

Principal Investigator
David J Cuccia

Company Information

Modulim (AKA: MI Inc~Modulated Imaging Inc)

2400 Barranca
Irvine, CA 92614
   (949) 824-8367
   info@modulatedimaging.com
   www.modulim.com
Location: Single
Congr. District: 45
County: Orange

Phase I

Contract Number: 1R43RR030696-01
Start Date: 6/1/2010    Completed: 5/31/2012
Phase I year
2010
Phase I Amount
$348,297
Advances in digital photography have made it an efficient and economic option for dermatology applications to document skin characteristics during treatment planning and to assess treatment outcome. Commercial-grade digital cameras, however, are not equivalent and different brands will produce pictures that are surprisingly variable with qualitative color information that the clinician will interpret to assess physiological tissue health. Advanced optical imaging methods and devices offer the ability to perform quantitative characterization of tissue structure and biochemical status. To this end, the design and fabrication of a low-cost, hand-held, quantitative skin imaging camera that exploits a new imaging technique known as Modulated Imaging (MI) has been proposed. Additionally, assessment of the performance of the device on tissue phantoms will provide objective parameters that can be used to determine performance for in-vivo tissue analysis. Modulated Imaging (MI), a technology that has been developed over the course of the most recent Laser and Medical Microbeam Program (LAMMP) funded under a NIH/NCRR Biomedical Technology Resource Center grant, employs multispectral, patterned illumination to non-invasively obtain optical properties of tissues over a wide field-of-view to determine the in-vivo concentrations of chromophores, namely oxy/deoxy-hemoglobin (HbO2/Hb) and water (H2O). In addition, the system can determine the true reflectivity of the skin and account for body curvature to generate calibrated RGB images, and potentially measure the melanin concentration. The broad goal of this proposal is to take the MI technology and develop a handheld camera akin to a digital- SLR. In addition to providing more accurate RGB assessment, this effort will transition a technology that provides quantitative biochemical information of the skin into a device with wider applicability in research and development applications where it is currently too expensive and cumbersome to do so. This proposal details the efforts to methodically investigate and develop this technology in the following progression: 1) Develop and document the requirements for an MI-DSLR system for dermatology applications, 2) Perform modeling and simulations for wavelength/frequency optimization, 3) Design and fabricate an MI-DSLR camera that satisfies the requirements developed, and 4) Validate the MI-DSLR performance in a laboratory setting. The successful completion of the Phase I research outlined herein, will allow a Phase II proposal that will expand upon this research and will involve the design and fabrication of multiple hand-held devices for clinical testing. The ultimate intent will be to develop the MI-DSLR quantitative camera system for research and commercial use in any medical application where digital cameras are currently being used for documenting skin characteristics.

Public Health Relevance:
We propose to exploit a novel imaging technique known as Modulated Imaging (MI) to develop an improved, hand-held digital camera system for dermatology applications that will provide more accurate color rendition and tissue health status then what is currently available. This camera will enable doctors to make better assessments during per-treatment planning and post- treatment evaluation, leading to cost-effective and improved patient care.

Thesaurus Terms:
Accounting; After Care; After-Treatment; Aftercare; Area; Biochemical; Biological; Biomedical Technology; Bite; Body Tissues; Characteristics; Clinical Evaluation; Clinical Testing; Color; Dependence; Dermatology; Development; Development And Research; Devices; Diagnostic; Digital Photography; Disease Progression; Documentation; Economics; Electromagnetic, Laser; Environment; Evaluation; Fats; Fatty Acid Glycerol Esters; Feasibility Studies; Feedback; Frequencies (Time Pattern); Frequency; Funding; Goals; Grant; Hand; Health; Health Status; Hemoglobin; Hydrogen Oxide; Illumination; Image; Imaging Procedures; Imaging Techniques; Imaging Technology; Instrumentation, Other; Laboratories; Lasers; Level Of Health; Light; Lighting; Malignant Skin Neoplasm; Malignant Tumor Of The Skin; Measurement; Measures; Medical; Melanins; Melanoma And Non-Melanoma Skin Cancer; Metric; Modeling; Monitor; Operation; Operative Procedures; Operative Surgical Procedures; Optics; Patient Care; Patient Care Delivery; Pattern; Performance; Phase; Photoradiation; Physiologic; Physiological; Procedures; Programs (Pt); Programs [publication Type]; Property; Property, Loinc Axis 2; Qoc; Quality Of Care; R & D; R&D; Radiation, Laser; Recommendation; Reconstructive Surgical Procedures; Reproducibility; Research; Research Resources; Resolution; Resources; Simulate; Skin; Skin Cancer; Skin Cancer, Including Melanoma; Source; Structure; Surgical; Surgical Interventions; Surgical Procedure; System; System, Loinc Axis 4; Technics, Imaging; Technology; Testing; Therapeutic; Time; Tissue Viability; Tissues; Treatment Outcome; Underserved Population; Water; Weight; Wound Healing; Wound Repair; Analytical Tool; Base; Chromophore; Clinical Test; Computer Imaging; Cost; Design; Designing; Digital; Digital Imaging; Imaging; Imaging Modality; Improved; In Vivo; Instrumentation; Models And Simulation; Novel; Optic Imaging; Optical Imaging; Portability; Programs; Prototype; Public Health Relevance; Reconstructive Surgery; Research And Development; Research Clinical Testing; Response; Surgery; Systems Research; Tissue Phantom; Tissue Repair; Treatment Planning; Under Served Population; Underserved People

Phase II

Contract Number: 5R43RR030696-02
Start Date: 6/1/2010    Completed: 5/31/2012
Phase II year
2011
(last award dollars: 2018)
Phase II Amount
$1,839,439

Advances in digital photography have made it an efficient and economic option for dermatology applications to document skin characteristics during treatment planning and to assess treatment outcome. Commercial-grade digital cameras, however, are not equivalent and different brands will produce pictures that are surprisingly variable with qualitative color information that the clinician will interpret to assess physiological tissue health. Advanced optical imaging methods and devices offer the ability to perform quantitative characterization of tissue structure and biochemical status. To this end, the design and fabrication of a low-cost, hand-held, quantitative skin imaging camera that exploits a new imaging technique known as Modulated Imaging (MI) has been proposed. Additionally, assessment of the performance of the device on tissue phantoms will provide objective parameters that can be used to determine performance for in-vivo tissue analysis. Modulated Imaging (MI), a technology that has been developed over the course of the most recent Laser and Medical Microbeam Program (LAMMP) funded under a NIH/NCRR Biomedical Technology Resource Center grant, employs multispectral, patterned illumination to non-invasively obtain optical properties of tissues over a wide field-of-view to determine the in-vivo concentrations of chromophores, namely oxy/deoxy-hemoglobin (HbO2/Hb) and water (H2O). In addition, the system can determine the true reflectivity of the skin and account for body curvature to generate calibrated RGB images, and potentially measure the melanin concentration. The broad goal of this proposal is to take the MI technology and develop a handheld camera akin to a digital- SLR. In addition to providing more accurate RGB assessment, this effort will transition a technology that provides quantitative biochemical information of the skin into a device with wider applicability in research and development applications where it is currently too expensive and cumbersome to do so. This proposal details the efforts to methodically investigate and develop this technology in the following progression: 1) Develop and document the requirements for an MI-DSLR system for dermatology applications, 2) Perform modeling and simulations for wavelength/frequency optimization, 3) Design and fabricate an MI-DSLR camera that satisfies the requirements developed, and 4) Validate the MI-DSLR performance in a laboratory setting. The successful completion of the Phase I research outlined herein, will allow a Phase II proposal that will expand upon this research and will involve the design and fabrication of multiple hand-held devices for clinical testing. The ultimate intent will be to develop the MI-DSLR quantitative camera system for research and commercial use in any medical application where digital cameras are currently being used for documenting skin characteristics.

Public Health Relevance:
We propose to exploit a novel imaging technique known as Modulated Imaging (MI) to develop an improved, hand-held digital camera system for dermatology applications that will provide more accurate color rendition and tissue health status then what is currently available. This camera will enable doctors to make better assessments during per-treatment planning and post- treatment evaluation, leading to cost-effective and improved patient care.

Thesaurus Terms:
Accounting;After Care;After-Treatment;Aftercare;Area;Biochemical;Biological;Biomedical Technology;Body Tissues;Characteristics;Clinical Evaluation;Clinical Testing;Color;Dependence;Dermatology;Development;Development And Research;Devices;Diagnostic;Digital Photography;Disease Progression;Documentation;Economics;Electromagnetic, Laser;Environment;Evaluation;Fats;Fatty Acid Glycerol Esters;Feasibility Studies;Feedback;Frequencies (Time Pattern);Frequency;Funding;Goals;Grant;Hand;Health;Health Status;Hemoglobin;Hydrogen Oxide;Illumination;Image;Imaging Device;Imaging Procedures;Imaging Techniques;Imaging Tool;Imaging Technology;Instrumentation, Other;Laboratories;Lasers;Level Of Health;Light;Lighting;Malignant Skin Neoplasm;Malignant Tumor Of The Skin;Measurement;Measures;Medical;Melanins;Melanoma And Non-Melanoma Skin Cancer;Metric;Modeling;Monitor;Ncrr;Nih;National Center For Research Resources;National Institutes Of Health;National Institutes Of Health (U.S.);Operation;Operative Procedures;Operative Surgical Procedures;Optics;Patient Care;Patient Care Delivery;Pattern;Performance;Phase;Photoradiation;Physiologic;Physiological;Procedures;Programs (Pt);Programs [publication Type];Property;Property, Loinc Axis 2;Qoc;Quality Of Care;R &D;R&D;Radiation, Laser;Recommendation;Reconstructive Surgical Procedures;Reproducibility;Research;Research Resources;Resolution;Resources;Simulate;Skin;Skin Cancer;Skin Cancer, Including Melanoma;Source;Structure;Surgical;Surgical Interventions;Surgical Procedure;System;System, Loinc Axis 4;Technics, Imaging;Technology;Testing;Therapeutic;Time;Tissue Viability;Tissues;Treatment Outcome;Underserved Population;United States National Institutes Of Health;Water;Weight;Wound Healing;Wound Repair;Analytical Tool;Base;Chromophore;Clinical Test;Computer Imaging;Cost;Cost Effective;Design;Designing;Digital;Digital Imaging;Imaging;Imaging Modality;Improved;In Vivo;Instrumentation;Model;Models And Simulation;Novel;Optic Imaging;Optical Imaging;Portability;Programs;Prototype;Public Health Relevance;Reconstructive Surgery;Research And Development;Research Clinical Testing;Response;Surgery;Systems Research;Tissue Phantom;Tissue Repair;Treatment Planning;Under Served Population;Underserved People