SBIR-STTR Award

Ultraprecision Diamond Machining of Conventional Non-Diamond Machinable Materials
Award last edited on: 7/25/07

Sponsored Program
SBIR
Awarding Agency
NIH : NIBIB
Total Award Amount
$97,099
Award Phase
1
Solicitation Topic Code
-----

Principal Investigator
Gang Zhang

Company Information

Echemics

1801 Crest Vista Drive Suite 1A
Monterey Park, CA 91754
   (323) 268-8966
   info@echemics.com
   www.chemics.com
Location: Single
Congr. District: 27
County: Los Angeles

Phase I

Contract Number: 1R43EB007412-01
Start Date: 5/1/07    Completed: 10/31/07
Phase I year
2007
Phase I Amount
$97,099
Echemics proposes to explore the feasibility of an innovative technology for the diamond machining of the materials that are not conventionally considered to be diamond machinable. Ultraprecision diamond machining such as diamond turning and milling has been widely used to produce optical-quality surfaces, ultra- precisely remove materials, and fabricate microstructures and microdevices with sub-nanometer level surface finishes and sub-micrometer form accuracies. It is an indispensable machining process for fabricating ultraprecision macro- and micro-optics and non-optical components for biomedical products used for biomedicine, biomedical analysis, diagnostics, and treatments. However, one significant drawback of diamond machining is that it can only machine very limited materials called diamond machinable materials. It cannot machine many important materials such as ferrous alloys, stainless steel, titanium and nickel due to catastrophic diamond tool wear. Current technical solutions for extending diamond tool life only achieve limited success; suffer from high cost and complicated setup; and need additional equipment. The chemical reactive wear of diamond tools resulting from the surface-catalyzed reaction between diamond carbon and workpiece (e.g., steel) is one significant tool wear route. However, the current technical solutions have not explored the possibility of manipulating this catalytic reaction. Therefore, this proposal tries to investigate a novel approach to stop or slow down this catalytic reaction so that the high reaction rate can be greatly reduced and tool life can be extended. In this Phase I project, Echemics aims to prove if the proposed technical approach can indeed extend diamond tool life compared with normal diamond machining. If Phase I is successful, Phase II of the project will improve the process and fabricate some prototype biomedical products. As there is an increasing demand for directly diamond machining non-diamond machinable materials for a wide variety of biomedical and other applications, this proposed technology provides a new solution for this call. If successful, Echemics aims to commercialize this novel technology for growing the company and also making the country's ultraprecision manufacturing sector more competitive. This SBIR Phase I project will explore the feasibility of an innovative technology for the ultraprecision diamond machining of the materials that are not conventionally considered to be diamond machinable. Diamond machining is an indispensable machining process for fabricating ultraprecision macro- and micro- optics and non-optical components for biomedical products, including such as diagnostic imaging devices, drug delivery components, implantable components, lab-on-a-chip devices, micro total analysis systems (f-TAS), and MEMS (MicroElectroMechanical Systems) for biomedicine, biomedical analysis, diagnostics, and treatments. The proposed technology aims to fabricate totally new devices, improve the quality of existing devices, lower manufacturing costs, and become a more universal rapid prototyping tool.

Thesaurus Terms:
There Are No Thesaurus Terms On File For This Project.

Phase II

Contract Number: ----------
Start Date: 00/00/00    Completed: 00/00/00
Phase II year
----
Phase II Amount
----