SBIR-STTR Award

Transposon-mediated Gene Therapy for Fanconi Anemia
Award last edited on: 5/9/08

Sponsored Program
SBIR
Awarding Agency
NIH : NHLBI
Total Award Amount
$1,639,489
Award Phase
2
Solicitation Topic Code
-----

Principal Investigator
Perry B Hackett

Company Information

Discovery Genomics Inc (AKA: DGI)

614 Mckinley Place Ne
Minneapolis, MN 55413
   (612) 624-6736
   scottm@discoverygenomics.net
   www.discoverygenomics.net
Location: Single
Congr. District: 05
County: Hennepin

Phase I

Contract Number: 1R43HL076908-01
Start Date: 00/00/00    Completed: 00/00/00
Phase I year
2004
Phase I Amount
$235,588
Fanconi anemia (FA) is an inherited recessive disorder caused by deficiency of one of several (up to 9) proteins involved in the regulation of DNA repair. Patients exhibit birth defects, suffer from bone marrow failure early in life, and are prone to develop cancers including leukemia and solid tumors. The only effective treatment for FA is allogeneic bone marrow transplant, but many patients lack a matched donor. We propose the treatment of FA by introduction and expression the FANC gene by combining the cell-loading technology of MaxCyte, Inc., with the DNA integrating technology of Discovery Genomics, Inc. (DGI). In Specific Aim 1, we will first test the combination of these two technologies by using reporter genes to ascertain long-term gene transfer and expression in cultured hematopoietic cells. DGI will assemble transposons designed for introduction and expression of red fluorescent protein (dsRed). MaxCyte will then use its electroporation technology for high efficiency loading of the transposon DNA into several different hematopoietic cell lines (Jurkat, KB, K562) along with a source of transposase which mediates transposition from the newly-introduced plasmid DNA into chromosomal DNA. Gene expression will be assayed over time by flow cytometry, and molecular analyses (PCR, Southern blot) will be conducted for analysis of transposition into chromosomal targets. In Aim 2, DGI will assemble transposons designed for expression of the human FANC-C and FANC-A genes. MaxCyte will then load these transposons into lymphoblastoid cell lines established from patients with Fanconi anemia type C or A, respectively, testing these cell populations for reduced sensitivity to the DNA damaging agent mitomycin C as well as for transposition by molecular genetic analysis. These Phase 1 studies will provide the basis for further preclinical development of the combined cell loading and DNA integrating technologies targeting hematopoietic stem cells (HSC) in Phase 2. These studies will be ground-breaking in that long-term expression of genes after non-viral introduction into HSC has yet to be reported, and will require the efficient cell loading and integrating capacities provided by our combined technologies. Initial development cell loading / DNA integration approach is proposed here for Fanconi anemia, subsequently providing the technical basis for treatment of other inherited (immunodeficiencies, hemoglobinopathies) or acquired (AIDS) diseases.

Thesaurus Terms:
congenital aplastic anemia, gene therapy, technology /technique development, transposon /insertion element cell line, electroporation, gene delivery system, gene expression, hematopoietic stem cell, mitomycin C, reporter gene biotechnology, clone cell, flow cytometry, human genetic material tag, polymerase chain reaction, southern blotting, tissue /cell culture

Phase II

Contract Number: 2R44HL076908-02
Start Date: 00/00/00    Completed: 00/00/00
Phase II year
2007
(last award dollars: 2008)
Phase II Amount
$1,403,901

Fanconi anemia (FA) is a rare, autosomal recessive inherited disease caused by the absence of any of eight different proteins that regulate DNA repair. Affected individuals suffer from bone marrow failure early in life. FA can be effectively treated by allogeneic hematopoietic stem cell transplant. However, most patients lack a matched related donor, and there is a marked increase in morbidity and mortality following transplant using stem cells from an unrelated source. Discovery Genomics, Inc. (DGI) is developing its Sleeping Beauty (SB) transposon system as a non- viral vector for gene therapy of FA. The two-component SB system consists of a transposon (inverted repeats flanking a therapeutic gene of interest) and a transposase that catalyzes excision of the transposon at the ends of the IR's and then integration into host cell chromosomal sequence. In Phase I studies, DGI demonstrated the successful loading of transposon DNA and RNA into cultured hematopoietic cells, and then correction of human lymphoblastoid cells deficient in Fanconi anemia complementation group C (FANC-C) by SB-mediated transposition. In this Phase II application, the overall goal is to provide key preclinical data that will be necessary to support the anticipated efficacy of SB-mediated gene therapy for FA. In this regard, there are two key questions that will need to be addressed; (i) What is the effectiveness of SB-mediated FANC gene insertion in the treatment of an animal model of FA? (ii) For the human trial, what is the clinically applicable methodology that will be used for introduction of FANC-encoding transposon DNA into human hematopoietic stem cells (HSC)? There are two Specific Aims: Aim 1. Evaluate Sleeping Beauty transposon-mediated integration and long-term expression of the FANC-C gene in hematopoietic stem cells of FANC-C deficient mice as a model for SB-mediated gene therapy for Fanconi anemia. Aim 2. Evaluate Sleeping Beauty transposon-mediated integration and long-term expression in human CD34+ hematopoietic stem cells. For both of these Aims, SB transposon DNA and transposase-encoding sequence will be introduced into HSC using Cyto Pulse electroporation technology. Results from these experiments will provide the technical basis for achieving transposon-mediated integration and long-term expression in hematopoietic stem cells, the cell population that will be targeted for FA gene therapy, and will also provide the commercial basis for growth of DGI in the development of FA gene therapy using the SB transposon system. This project describes the development of a non-viral gene transfer method for treatment of Fanconi anemia, a rare disorder of the blood, by Discovery Genomics, Inc. (DGI), a small biotech startup company. Successful treatment of Fanconi anemia using DGI's transposon system is intended to provide proof of principle for the potential application of this technology to the treatment of other disorders of the blood as well.

Thesaurus Terms:
congenital aplastic anemia, gene therapy, nonhuman therapy evaluation, technology /technique development, transposon /insertion element CD34 molecule, disease /disorder model, electroporation, gene delivery system, gene expression, hematopoietic stem cell, reporter gene biotechnology, clone cell, flow cytometry, laboratory mouse, tissue /cell culture