SBIR-STTR Award

Parallelization Toolkit for NASA CCMC
Award last edited on: 8/18/22

Sponsored Program
SBIR
Awarding Agency
NASA : GSFC
Total Award Amount
$874,669
Award Phase
2
Solicitation Topic Code
S5.06
Principal Investigator
Kevin Olson

Company Information

Continuum Dynamics Inc

34 Lexington Avenue
Ewing, NJ 08618
   (609) 538-0444
   info@continuum-dynamics.com
   www.continuum-dynamics.com
Location: Single
Congr. District: 12
County: Mercer

Phase I

Contract Number: 80NSSC21C0398
Start Date: 5/17/21    Completed: 11/19/21
Phase I year
2021
Phase I Amount
$124,833
High Performance Computing (HPC) models of heliophysics plays a critical role in many aspects of space weather, from understanding fundamental physics to predicting real-world events. HPC models of heliophysics can also support the development of space weather mitigation technologies and decision making. NASA currently employs HPC models, such as ENLIL, to model the physics of the Sun. However, ENLIL cannot currently fully exploit the parallel processing capabilities of the modern multi-core compute nodes, nor can it utilize the GPU accelerators now common on NASA’s HPC clusters. Maintaining a mission critical code like ENLIL can be a challenge, as both the number of man hours required to enable the code to properly exploit new hardware is non-trivial, and the HPC environment itself is continually evolving. A new Domain Specific Language (DSL), together with a source-to-source translator, is proposed that will allow mission critical NASA codes, like ENLIL, to be written in a form that allows for improved portability between various HPC environments and hardware (including GPU accelerators), and reduce the level of skill and effort required to maintain and extend such codes. A proof-of-concept prototype of the language and source-to-source translator will be developed in Phase I and demonstrated using an in-house CFD solver. The deliverable in Phase I is a report detailing the findings of Phase I, along with a plan for Phase II development. In Phase II, a fully working language specification and source-to-source translator will be developed and demonstrated by rewriting ENLIL. The deliverables for Phase II are progress reports and a rewritten version of ENLIL that can exploit modern, heterogeneous HPC platforms, and will be easier to maintain as the HPC environment continues to evolve. Potential NASA Applications (Limit 1500 characters, approximately 150 words): The proposed work will result in the modernization of ENLIL, a mission critical code used by the NASA CCMC for modeling heliophysics. By improving the performance, portability, and ease of maintenance of ENLIL, the proposed work will support NASA’s role under the National Space Weather Strategy and Action Plan, and have a beneficial impact on NASA’s space weather forecasting and mitigation capabilities. Potential Non-NASA Applications (Limit 1500 characters, approximately 150 words): The Domain Specific Language (DSL) and translator may be applied to any Cartesian grid based PDE solver. In addition to space weather modeling, the tools developed under this work will potentially have application in the financial industry. Since the proposed DSL reduces the skill and effort required to write portable HPC code, the tools developed here may be useful for academic teaching/research. Durati

Phase II

Contract Number: 80NSSC22CA103
Start Date: 4/12/22    Completed: 4/11/24
Phase II year
2022
Phase II Amount
$749,836
High Performance Computing (HPC) models of heliophysics play a critical role in many aspects of space weather, from understanding fundamental physics to predicting real-world events. HPC models of heliophysics can also support the development of space weather mitigation technologies and decision making. NASA currently employs HPC models, such as ENLIL, to model the physics of the Solar wind. However, ENLIL cannot currently fully exploit the parallel processing capabilities of modern multi-core compute nodes, nor can it utilize the GPU accelerators now common on NASA’s HPC clusters. Maintaining a mission critical code like ENLIL can be a challenge, as both the number of man hours required to enable the code to properly exploit new hardware is non-trivial, and the HPC environment itself is continually evolving. A new Domain Specific Language (DSL), together with a source-to-source translator (called ptool), is proposed that will allow mission critical NASA codes, like ENLIL, to be written in a form that allows for improved portability between various HPC environments and hardware (including GPU accelerators) and reduce the level of skill and effort required to maintain and extend such codes. A proof-of-concept prototype of ptool was developed in Phase I and demonstrated using an in-house CFD solver. The main deliverables in Phase II are progress reports, the final, production version of ptool, and an updated version of ENLIL rewritten using ptool’s syntax that exploits modern, heterogeneous HPC platforms, and will be easier to maintain as the HPC environment continues to evolve. Potential NASA Applications (Limit 1500 characters, approximately 150 words): The proposed work will result in the modernization of ENLIL, a mission critical code used by the NASA CCMC for modeling heliophysics. By improving the performance, portability, and ease of maintenance of ENLIL, the proposed work will support NASA’s role under the National Space Weather Strategy and Action Plan, and have a beneficial impact on NASA’s space weather forecasting and mitigation capabilities. Potential Non-NASA Applications (Limit 1500 characters, approximately 150 words): The Domain Specific Language (DSL) and translator may be applied to any Cartesian grid based PDE solver. In addition to space weather modeling, the tools developed under this work will potentially have application in the financial industry. Since the proposed DSL reduces the skill and effort required to write portable HPC code, the tools developed here may be useful for academic teaching/research. Durat