SBIR-STTR Award

Optimization of Supersonic Jet Noise Using a Reynolds-Averaged Navier-Stokes Approach
Award last edited on: 5/7/2021

Sponsored Program
SBIR
Awarding Agency
NASA : GRC
Total Award Amount
$869,533
Award Phase
2
Solicitation Topic Code
A1.04
Principal Investigator
Zhi Yang

Company Information

Scientific Simulations LLC

1582 Inca Drive
Laramie, WY 82072
   (307) 766-2868
   info@scientific-sims.com
   www.scientific-sims.com
Location: Single
Congr. District: 00
County: Albany

Phase I

Contract Number: 80NSSC18P1888
Start Date: 7/27/2018    Completed: 2/15/2019
Phase I year
2018
Phase I Amount
$121,067
The objective of this proposal is the development and demonstration of a cost-effective high-fidelity aeroacoustic design tool for future commercial supersonic nozzle designs and installations. Although eddy-resolving CFD methods for computing high-speed jet noise are available, such methods are computationally expensive and are currently deemed impractical for use in a design optimization loop. On the other hand, the prediction of turbulence generated noise using the RANS equations provides a less accurate but more cost-effective approach for practical design problems, wherein the turbulence length and time scales needed to model the local noise source terms can be extracted from the RANS turbulence model solution, as performed by the NASA JeNo code. In this Phase 1 proposal, we seek to demonstrate the feasibility of using the exact discrete adjoint of a coupled RANS-JeNo turbulent noise prediction methodology for optimizing far-field acoustic objectives of jet noise. Based on our previous experience developing an unsteady RANS-FWH (Ffowcs Williams-Hawkings) far-field acoustic optimization capability, the Phase 1 proposal targets the formulation of the turbulence noise source terms used by the JeNo code, along with the discrete adjoint of these terms within an existing adjoint-enabled RANS solver. The immediate goal will be to demonstrate the possibility of reducing these noise sources through nozzle shape optimization. In Phase 2, this capability will be linked with the NASA JeNo code, and the remaining terms for the formulation of the discrete adjoint of the coupled RANS-JeNo simulation capability will be implemented and used to perform optimization of far-field noise signatures for realistic nozzle configurations. By targeting the specific terms that drive the noise propagation in the JeNo formulation, our Phase 1 approach will demonstrate the feasibility of using a fully coupled RANS-JeNo code for cost-effective gradient-based jet noise optimization. Potential NASA Applications The proposed technique will provide a novel tool for enabling the design of supersonic nozzles optimized for reduced far-field noise signatures. This is an important application area for NASA ARMD, since the acceptance of future commercial supersonic aircraft depends heavily on reduced environmental impact. The optimization approach will be developed in a modular fashion and will be easily transferable to NASA in-house RANS codes which incorporate an adjoint capability such as FUN3D. Potential Non-NASA Applications The jet noise optimization capability will be incorporated into the simulation and design tools developed by Scientific-Simulations LLC and will be marketed to existing and potential new customers. The proposed approach is seen as a natural extension of the various multidisciplinary adjoint capabilities already developed at Scientific Simulations, and will enable new applications in high-speed jet noise optimization, which may be introduced in combination with these other disciplines.

Phase II

Contract Number: 80NSSC19C0090
Start Date: 8/13/2019    Completed: 8/12/2021
Phase II year
2019
Phase II Amount
$748,466
The objective of this proposal is the development and demonstration of a cost-effective high-fidelity aeroacoustic design tool for future commercial supersonic nozzle designs and installations. Although eddy-resolving CFD methods for computing high-speed jet noise are available, such methods are computationally expensive and are currently deemed impractical for use in a design optimization loop. On the other hand, the prediction of turbulence generated noise using the Reynolds-Averaged Navier-Stokes (RANS) equations provides a less accurate but more cost-effective approach for practical design problems, wherein the turbulence length and time scales needed to model the local noise source terms can be extracted from the RANS turbulence model solution, as performed by the NASA JeNo code. The objective of this project is to develop a tightly coupled practical RANS-based jet-noise aeroacoustic analysis and design optimization capability which can be leveraged by government and industrial customers to better understand and design efficient propulsion systems that meet well defined and accepted noise metrics. The approach consists of developing an exact discrete adjoint method for a tightly coupled RANS-acoustic prediction method in order to provide sensitivities for gradient-based aerodynamically constrained acoustic optimizations. This capability will be demonstrated on realistic nozzle configurations including single and dual stream chevron nozzles, and marketed to government and industrial customers in the aerospace industry. Potential NASA Applications (Limit 1500 characters, approximately 150 words) The proposed technique will provide a novel tool for enabling the design of supersonic nozzles optimized for reduced far-field noise signatures. This is an important application area for NASA ARMD, since the acceptance of future commercial supersonic aircraft depends heavily on reduced environmental impact. The optimization approach will be developed in a modular fashion and will be easily transferable to NASA in-house RANS codes which incorporate an adjoint capability such as FUN3D. Potential Non-NASA Applications (Limit 1500 characters, approximately 150 words) The jet noise optimization capability will be incorporated into the simulation and design tools developed by Scientific-Simulations and will be marketed to existing and new customers. The approach is seen as a natural extension of the various multidisciplinary adjoint capabilities already developed at Scientific Simulations, and will enable new applications in high-speed jet noise optimization.