SBIR-STTR Award

Deep Space Cryocooler System (DSCS)
Award last edited on: 2/8/2017

Sponsored Program
SBIR
Awarding Agency
NASA : GSFC
Total Award Amount
$874,293
Award Phase
2
Solicitation Topic Code
S1.09
Principal Investigator
Mitul Jambusaria

Company Information

Iris Technology Corporation

2811 McGaw Avenue Suite A
Irvine, CA 92616
   (949) 975-8410
   ejorourke@iristechnology.org
   www.iristechnology.org
Location: Single
Congr. District: 47
County: Orange

Phase I

Contract Number: ----------
Start Date: ----    Completed: ----
Phase I year
2016
Phase I Amount
$124,769
As NASA missions continue to extend the horizon beyond near-Earth missions, higher performance systems must evolve to address the challenges of reduced power resources, longer mission durations, higher radiation exposure, and more broadly, harsher space environments. The vision of the low-temperature and input power Deep Space Cryocooler System (DSCS) is to advance the state of the art in Cryocooler systems by developing a low-cost single stage cryocooler, designed to target low heat rejection temperatures (150K) and low cold-tip temperatures (35K), and integrate it with a set of high reliability, micro-sized Low Cost Cryocooler Electronics (?LCCE) customized to operate efficiently at very low power levels (10W). Additionally, the low-cost, light weight, and small size of the DSCS will enable instrumentation on miniature satellite platforms. A key objective of this effort is to develop and demonstrate cryogenic cooling technologies for science measurement capabilities with smaller, more affordable spacecraft and concurrently reducing system risk, cost, size, and development time, consistent with NASA SBIR Science Subtopic S1.09.In the Phase I effort, the uLCCE brassboard will improve upon the mLCCE (TRL6 in 2016) design by evaluating a handful of candidate improvements that will reduce the SWaP requirements of the electronics. Detailed circuit modeling will verify performance of key parameters , which will then inform the final schematic and layout of the uLCCE. The accompanying Thermo-Mechanical Unit will be designed by Lockheed Martin. The conceptual coldhead design leverages their existing TRL 6 Microcryocooler, and will introduce design improvements to target the low heat reject and cold-tip temperatures specified in this solicitation. The design approach will be confirmed with detailed thermodynamic modeling. A prototype uLCCE and upgraded microcryocooler will be built and integration tested in a future Phase II effort.

Phase II

Contract Number: ----------
Start Date: ----    Completed: ----
Phase II year
2017
Phase II Amount
$749,524
The Iris Technology and Lockheed Martin team has developed a cryocooler system design which meets the S1.09 SBIR topic goals at twice the desired cooling capacity (0.4W at 35K) delivering Engineering Model hardware under DSCS Phase II for both the cryocooler and its optimized control electronics. The DSCS Program builds off the previous successes of the USAF "MicroSat Cryocooler System (MCS)" Program (FA9453-14-C-0294). The DSCS extends the Miniature Low Cost Cryocooler Electronics (mLCCE) performance reducing size, weight and power of the deep-space rad-hard integrated circuits. The DSCS enhances the thermo-mechanical unit with a new inertance tube and regenerator packing to optimize the cryocooler design for 35K cold-tip and 150K heat rejection temperatures. To achieve this higher performance, the DSCS cryocooler is based on the Lockheed Martin Space Systems Company (LMSSC) TRL-6 High Power Microcryocooler. LMSSC's initial trade study shows the predicted performance of the High Power coldhead is significantly better than the standard coldhead. This is largely due to a greater regenerator volume, and thus greater regenerator heat capacity. The High Power coldhead heat exchangers are slightly larger, increasing their effectiveness and improving performance. In addition, Iris proposes the Phase I electronics design will be reviewed against sample planetary mission parts lists in Phase II. The uLCCE provides a mission-critical, radiation tolerant system solution, easily extendible to a radiation hardened flight platform.