SBIR-STTR Award

Additive Friction Stir Deposition of Aluminum Alloys and Functionally Graded Structures
Award last edited on: 2/16/2017

Sponsored Program
SBIR
Awarding Agency
NASA : LaRC
Total Award Amount
$874,792
Award Phase
2
Solicitation Topic Code
H5.02
Principal Investigator
Kumar Kandasamy

Company Information

Aeroprobe Corporation (AKA: Schultz-creehan Holdings Inc)

200 Technology Drive
Christiansburg, VA 24073
   (540) 443-9215
   info@aeroprobe.com
   www.aeroprobe.com
Location: Single
Congr. District: 09
County: Montgomery

Phase I

Contract Number: ----------
Start Date: ----    Completed: ----
Phase I year
2013
Phase I Amount
$124,866
State-of-the-art additive manufacturing technologies for metal parts have evolved around powder metallurgy and fusion welding-based processes. Both of these processing methodologies yield parts with inferior mechanical and physical properties as compared to wrought metal of the same composition. Additionally, the production rates for even the fastest processes are relatively low (~40 lbs/hr for Ti) and the part envelopes are limited to a few cubic feet. Aeroprobe proposes a highly scalable process for additive manufacturing of wrought metal structures based on their additive friction stir (AFS) process which provides high-strength coatings and welds (strengths comparable to the base metal UTS) while retaining a wrought microstructure. AFS has successfully deposited materials ranging from light metals, such as Al and Mg alloys, to high-temperature metals, such as Inconel 625 and oxide dispersion strengthened steels. Initial additive manufacturing demonstrations with AFS were highly successful and produced fully dense structures with wrought mechanical properties. The overall objective of this project is to further develop AFS technology into an additive manufacturing process to enable full-density, near net-shape fabrication of airframe structures. An initial process-structure-property relationship study will be conducted to demonstrate the physical and mechanical properties achievable in Al alloys via AFS. Finally, Aeroprobe will demonstrate the feasibility of AFS to produce complex 3D structures by fabricating an aluminum demonstration part of a relevant geometry.

Phase II

Contract Number: ----------
Start Date: ----    Completed: ----
Phase II year
2014
Phase II Amount
$749,926
State-of-the-art additive manufacturing technologies for metal parts have evolved primarily around powder metallurgy and fusion welding-based processes. These processing methodologies yield parts with inferior mechanical and physical properties as compared to wrought metal of the same composition. Additionally, the production rates for even the fastest processes are relatively low, the part envelopes are limited to a few cubic feet, and often the process must be conducted in an atmospherically controlled chamber. Aeroprobe's additive friction stir (AFS) process is a novel high-speed, large-volume wrought metal additive manufacturing technology that will enable affordable, full-density, near net-shape component manufacturing from a wide range of alloys, including aerospace aluminum alloys, nickel-based super alloys, and metal matrix composites. The ability to rapidly fabricate large-scale, complex wrought and functionally graded aluminum components from three-dimensional models will be an enabling manufacturing advancement in exploration launch vehicle fabrication, for parts such as those on the Orion Crew Module. A scaled representation of the window frame structure proposed for the Orion Crew Module was fabricated from 6061 Al using Aeroprobe's additive friction stir process during the Phase I program. To move AFS up the TRL ladder to full-scale demonstration and deployment, two major technical objectives must be met: (1) develop process/structure/property relationships for AFS deposition of aluminum aerospace alloys, such as 2219, which can be used for process control and material property optimization; and (2) demonstrate net-shape, large-scale aluminum launch vehicle and aerospace components (including a functionally graded structure) with mechanical properties comparable to traditional wrought metals.