SBIR-STTR Award

Heated Thermoplastic Fiber Placement Head for NASA Langley Research Center
Award last edited on: 6/25/2020

Sponsored Program
SBIR
Awarding Agency
NASA : LaRC
Total Award Amount
$820,000
Award Phase
2
Solicitation Topic Code
A4.04
Principal Investigator
Mark B Gruber

Company Information

Accudyne Systems Inc

210 Executive Drive
Newark, DE 19702
   (302) 369-5390
   jmelilli@accudyne.com
   www.accudynesys.com
Location: Single
Congr. District: 00
County: New Castle

Phase I

Contract Number: ----------
Start Date: ----    Completed: ----
Phase I year
2004
Phase I Amount
$70,000
Reduced mass composite materials are crucial to the success of aerospace systems, but are inhibited by expensive autoclave consolidation, especially for large parts. To remedy this, NASA-LaRC has been developing cost-effective high-performance thermoplastic composite materials for years. NASA materials could dramatically reduce the cost of large aerospace structures, because those materials avoid the autoclave. However, NASA lacks a robust, cost-effective fabrication process to tow-place these emerging materials into laminates, and thus can?t evaluate their usefulness to industry. This program develops for NASA-LaRC the processing equipment that allows material evaluation and allows out-of-autoclave fiber placement. In particular, this program will deliver a heated in situ deposition head to fit on NASA-LaRCs placement machine. Heads can also be sold to industrial companies for existing placement machines so that aerospace composites can be fabricated out of the autoclave. In phase I, the deposition head will be designed and reviewed with NASA. The process window requirements for the placement head for NASA materials will be verified. In phase II, we will complete the design, fabricate, install, and prove-out the head equipment. We then start up the deposition head at NASA so that the emerging NASA-LaRC materials can be proven in laminates.

Phase II

Contract Number: ----------
Start Date: ----    Completed: ----
Phase II year
2005
Phase II Amount
$750,000
___(NOTE: Note: no official Abstract exists of this Phase II projects. Abstract is modified by idi from relevant Phase I data. The specific Phase II work statement and objectives may differ)___ Reduced mass composite materials are crucial to the success of aerospace systems, but are inhibited by expensive autoclave consolidation, especially for large parts. To remedy this, NASA-LaRC has been developing cost-effective high-performance thermoplastic composite materials for years. NASA materials could dramatically reduce the cost of large aerospace structures, because those materials avoid the autoclave. However, NASA lacks a robust, cost-effective fabrication process to tow-place these emerging materials into laminates, and thus can?t evaluate their usefulness to industry. This program develops for NASA-LaRC the processing equipment that allows material evaluation and allows out-of-autoclave fiber placement. In particular, this program will deliver a heated in situ deposition head to fit on NASA-LaRCs placement machine. Heads can also be sold to industrial companies for existing placement machines so that aerospace composites can be fabricated out of the autoclave. In phase I, the deposition head will be designed and reviewed with NASA. The process window requirements for the placement head for NASA materials will be verified. In phase II, we will complete the design, fabricate, install, and prove-out the head equipment. We then start up the deposition head at NASA so that the emerging NASA-LaRC materials can be proven in laminates.