SBIR-STTR Award

Affordable Accurate Robot Guidance (AARG)
Award last edited on: 10/27/2009

Sponsored Program
SBIR
Awarding Agency
DOD : AF
Total Award Amount
$4,900,000
Award Phase
2
Solicitation Topic Code
AF091C-001
Principal Investigator
Brett Bordyn

Company Information

Variation Reduction Solutions Inc (AKA: VRSI Inc)

14901 Galleon Court
Plymouth, MI 48170
   (734) 414-0035
   kim@vrs-inc.com
   www.vrs-inc.com
Location: Single
Congr. District: 11
County: Wayne

Phase I

Contract Number: ----------
Start Date: ----    Completed: ----
Phase I year
2009
Phase I Amount
$100,000
The field of high-precision manufacturing, especially in the aerospace industry, has traditionally required either manual processes or the use of monolithic Cartesian NC-type machines.  There are many justifications for the desire to use articulated arm robots to perform these tasks.  While recent advances in robot design and self-compensating tool end effectors have mitigated the issue of robot stiffness under load, the accuracy of even enhanced robots typically precludes processes with positional tolerances of better than TP 0.040" - using external metrology to guide the robot more accurately continues to be the most cost-effective avenue to achieving significantly tighter production tolerances. Current metrology systems capable of guiding a robot and holding accuracies of better than TP 0.010" over a typical work cell volume are few.  None possesses the requisite speed, accuracy, and cost to warrant their use in most high-precision aerospace applications. The aim of this effort is to demonstrate TRL4 capability of an affordable, accurate, quick, deployable, and modular (distributable) external metrology system that is able to guide multiple articulated arm robots operating in non-confined spaces to a tolerance of TP 0.010".  The proposed system is laser-based, and entails a network of beacons and active targets.  

Benefit:
In general, the insertion of articulated arm robots into current manual or expensive NC machine tool applications requiring high positional tolerances has many obvious benefits, such as span time reduction; unit recurring flyway (URF) cost reduction; reduced production cell footprint and associated facilities costs; flexibility of system implementation; elimination of ergonomic issues; et al. A metrology system that enables robots to achieve these accuracies could also allow for palletized systems of robots, capable of docking in different work stations, grabbing different end effector tools, and performing different tasks.  The metrology system would allow for the coordinate system of the palletized robot to be related to the coordinate system of the tooling/part of the station in which it docks.  Particularly with respect to aerospace assembly, this would decrease idle time of equipment dedicated to a single process and station. Specific to this solicitation, which may address the production needs of Lockheed Martin Aerospace''s Right- and Left-Hand F-35 Upper Wingbox stations (J461/2 -7 autodrill), the resulting production solution will reduce span time, overall station cost, provide 100% inspection capability of c''sink/holes, and be able to attain the tolerances necessary for Interchangeable and Replaceable panels.  Even though span time reduction is not so critical here since all stations on the assembly line advance at the same time, lower cycle time would allow more margin for error if maintenance/servicing of the station is required. Compared to competing metrology systems, the proposed system will be at least as cost-effective, possess the ability to ''''see'''' the entire work volume without needing to be actuated, be at least as accurate as a laser tracker system (currently the highest accuracy, multi-axis, large scale volume metrology device), be several times quicker at generating the pose (position, orientation) of the robot''''s end effector compared to a laser tracker, and have components (beacons, active targets) that can be swapped-out and re-calibrated in-situ should hardware fail.

Keywords:
Assembly, Manufacturing, Robot Guidance, Robotic Hole Drilling, Robot Metrology, Robot Correction, Process Monitoring

Phase II

Contract Number: ----------
Start Date: ----    Completed: ----
Phase II year
2010
Phase II Amount
$4,800,000
The authors establish a novel metrology system capable of determining the pose of a robotically-mounted End of Arm Tool (EOAT) in Six Degrees of Freedom (6-DOF) to a capability better than True Position (TP) 0.010 in. The metrology system consists of low-cost, modular components in the form of motorized gimbals that steer laser beams onto robot-affixed, photosensitive chips typical of those found in digital cameras. The system was conceived to provide real-time pose information of an EOAT to better than True Position (TP) 0.0035 in. at the Tool Center Point (TCP). The system is scalable, deployable, and affordable, making it a viable candidate for guiding machines, particularly articulated arm robots, to aerospace tolerances over large volumes. Monte Carlo simulations, which propagate error through the system out to the EOAT, have shown the ability to determine the TCP to no worse than TP 0.002 in. over the volume of an F-35 Lightning II Wing Box robotic drilling system. Manufacturing Readiness Level 5 (MRL-5) testing of the system in a less than optimal environment showed it capable of determining the TCP to TP 0.0119 in. when compared to a laser tracker device. The current system updates the EOAT pose at 10 Hz. Significant improvement in both speed and accuracy will be achieved with minimal engineering changes to the system components, along with better mounting hardware and a more manufacturing-caliber test environment. It is intended that such a system will enable further penetration of Commercial, Off-the-Shelf (COTS) articulated arm robots into applications that previously required Numerically Controlled (NC) gantry machines, resulting in either less expensive systems or systems that provide significant span time reduction for approximately the same cost. In addition, the system could also be used to retrofit NC machines so that they achieve higher accuracies; to align large structures such as fuselages and wings during aerospace assembly; and to serve as a tool that enables ''birth certificate'' modeling of enhanced accuracy robots.

Benefit:
As mentioned previously, VRSI will be using a laser tracker as the benchmark for the novel guidance technology. The main points of comparison include cost, accuracy, speed, reliability, and scalability. With regard to cost, a typical laser tracker solution for robot guidance is ~ $210k not including integration services. This includes the laser tracker ($120k), optical corner cube clusters that need to be attached to the EOAT ($15k per EOAT), twenty additional Spherically Mounted Retroreflectors (SMRs) required as fixed work cell ''fiducials'' ($1k ea, for $20k + $10k for support tooling), laser tracker mounting hardware ($10k if stationary tracker at a single position), and controls software ($30k). Of course a spare tracker would add another $120k. VRSI''s AARG solution comes in at ~ $197k for hardware and software. This includes four Beacons (one arc second accuracy at $25k ea, for $100k), eight Active Targets attached to the EOAT ($1.5k ea, for $12k per EOAT), twenty additional Active Targets required as fixed work cell ''fiducials'' ($1.25k ea, for $25k + $10k for support tooling), Beacon mounting hardware ($20k), and controls software ($30k). A spare Beacon would add another $25k. So although the upfront cost is not necessarily compelling, it becomes more so when spare parts are considered ($330k versus $222k). Keeping with the one arc second accurate Beacons, computer simulations have shown that VRSI''s AARG system should perform as accurately as a laser tracker in determining the position of the EOAT TCP, at around TP 0.0035 in. This comparison takes into consideration published laser tracker accuracies in conjunction with the typical geometry between the EOAT corner cube cluster targets and the TCP. If greater accuracies are desired, a half arc second Beacon is currently available for $45k ea, pushing the system cost from $197k to $277k, but allowing the TCP to be determined to an accuracy of TP 0.002 in. The AARG system currently generates the 6-DOF pose of the EOAT at 10 Hz. Our experience with laser trackers shows a typical pose acquisition time of eight seconds. Assuming that each of the F-35 Wing Box holes will require two EOAT pose measurements (initial measurement, then validation measurement following a corrective offset), this comes to a guidance reduction of just under four hours per Wing Box surface (2 measurements x 950 fasteners x 7.5 sec/fastener = 237.5 min) if a single robot is being used to drill. This advantage is lessened as more robots are added to the drilling cell, as the other robots may be busy drilling while one is being guided. Concerning reliability, laser trackers are reasonably robust. However, as VRSI currently owns five laser trackers and has used them for years, it is not uncommon for a laser tracker to need emergency service once per year. The Beacons that VRSI has employed in Phase I come directly from the field of land surveying, and are designed for outdoor conditions involving high humidity and temperature variations (arctic versions are available), commonly being used in mining and construction applications. Since thousands of them are in use across the world, it is safe to consider them as being MRL-10 devices. The modularity of the AARG solution combined with the lower component cost per line of sight affords it an advantage over laser trackers when it comes to scalability. VRSI has also outlined procedures for ''plug and play'' swapping of defective Beacons and Active Targets, and would like to validate these methods as part of a Phase II effort.

Keywords:
Affordable, Accurate, Metrology, Robotic, Drilling, Milling