SBIR-STTR Award

Acoustic Reduction of Flow Separation
Award last edited on: 1/16/2015

Sponsored Program
STTR
Awarding Agency
NASA : DRFC
Total Award Amount
$700,000
Award Phase
2
Solicitation Topic Code
-----

Principal Investigator
Alan J Cisar

Company Information

Lynntech Inc

2501 Earl Rudder Freeway South
College Station, TX 77845
   (979) 764-2200
   requests@lynntech.com
   www.lynntech.com

Research Institution

----------

Phase I

Contract Number: ----------
Start Date: ----    Completed: ----
Phase I year
2010
Phase I Amount
$100,000
Airfoils produce more lift and less drag when the boundary layer is attached to the airfoil. With most aircraft there are combinations of airspeed and angle of attack where the boundary layer at least partially detaches from the airfoil. Reducing boundary layer detachment will increase lift and reduce drag. This will reduce fuel consumption saving money for the operator and improving control for the pilot. Two methods are known to improve boundary layer attachment: heating the air and supplying acoustic pressure at an airspeed and airfoil shape dependent frequency. Carbon nanotubes can be used to produce heating elements as thin as a layer of paint. Because they are thin they can be heated and cooled hundreds of times per second. This combination means that carbon nanotube heating elements can be thermoacoustic speakers to both heat the air stream and generate the appropriate acoustic frequency to maximize boundary zone attachment. All system components have been demonstrated individually achieving TRL 2. Phase I will demonstrate multifrequency sound generation on surfaces in a wind tunnel using nanotube heating elements, and achieving TRL 3. Phase II will include medium seals wind tunnel tests verifying the effects and achieving TRL 5.

Phase II

Contract Number: ----------
Start Date: ----    Completed: ----
Phase II year
2011
Phase II Amount
$600,000
Airfoils produce more lift and less drag when the boundary layer is attached to the airfoil. With most aircraft there are combinations of airspeed and angle of attack where the boundary layer at least partially detaches from the airfoil. Reducing boundary layer detachment increases lift and reduce drag reducing fuel consumption and improving control for the pilot. Two methods known to improve boundary layer attachment are heating the air and supplying acoustic pressure at an airfoil dependent frequency. In Phase I we demonstrated that thin (<50 µm) ribbons made from carbon nanotubes can be used to produce heating elements which can be heated and cooled hundreds of times per second. When properly located on the surface of a wing they can maximize boundary attachment as demonstrated by improvements of up to 20% in lift. In Phase II we will improve our understanding of the function of these thermoacoustic elements and demonstrate their durability and their effectiveness with larger components. In Phase I we demonstrated multifrequency sound generation on surfaces in a wind tunnel using nanotube heating elements, and achieving improved lift and TRL 3. Phase II will include medium scale wind tunnel tests verifying the effects and achieving TRL 5.