SBIR-STTR Award

Neurorestorative Therapy of Stroke with Hucbc in T2dm Rats
Award last edited on: 4/3/2019

Sponsored Program
STTR
Awarding Agency
NIH : NINDS
Total Award Amount
$422,946
Award Phase
2
Solicitation Topic Code
853
Principal Investigator
Jieli Chen

Company Information

Saneron CCEL Therapeutics Inc (AKA: CCel Bio-Therapies Inc)

13014 North Dale Mabry Highwat Suite 266
Tampa, FL 33618
   (813) 977-7664
   nkn@saneron-ccel.com
   www.saneron-ccel.com

Research Institution

Henry Ford Health System

Phase I

Contract Number: 1R41NS080329-01A1
Start Date: 3/1/2013    Completed: 2/28/2015
Phase I year
2013
Phase I Amount
$211,473
Diabetes mellitus (DM) leads to a 3-4 fold higher risk of experiencing ischemic stroke. In addition, DM stroke patients are more prone to develop more and earlier white matter (WM) high-intensity lesions than non DM stroke patients. Treatment of stroke with tissue plasminogen activator (rtPA) at 2-3 hours after stroke decreases lesion volume in non-DM rats. However, tPA does not reduce lesion volume nor improve functional outcome, but increases the incidence of brain hemorrhage and blood-brain barrier (BBB) leakage in the ischemic brain of DM rats. In addition, treatment of stroke with bone marrow stromal cells (BMSCs) improves functional outcome in wild-type (WT)-stroke rats but not in DM-stroke rats. Therefore, effective therapy of stroke in the non-DM population may not necessarily transfer to the DM population, prompting the need to develop therapeutic approaches specifically designed to reduce neurological deficits after stroke in the DM population. Human umbilical cord blood cells (HUCBCs) are less mature than bone marrow and can be successfully used even when there is only a half-match. We found that treatment of stroke with HUCBCs starting at 1 or 3 days after middle cerebral artery occlusion (MCAo) improves recovery of neurological function in DM rats. In a novel and clinically relevant approach, based on our robust preliminary data, we therefore, propose to use HUCBCs for the treatment of stroke in the type two DM (T2DM) rats. The following specific aims and associated hypotheses will develop HUCBC as a safe and novel neurorestorative therapy which improves neurological function and reduces WM dysfunction and vascular damage in T2DM rats subjected to MCAo. In Aim 1 will investigate the safety and therapeutic effect of treatment of stroke in T2DM rats with HUCBCs. In addition, we will test the therapeutic effect of combination of HUCBC with tPA in T2DM rats; we will identify any potential adverse effects of tPA on HUCBCs and determine whether HUCBC treatment attenuates tPA induced adverse effects in T2DM rats. In Aim 2, we will elucidate the neurorestorative effect of HUCBC on WM remodeling after stroke in T2DM rats. HUCBCs have great commercialization potential as therapeutic agents, since they are readily available and easy to isolate without serious ethical and technical problems. HUCBCs can be used for autologous transplantation or allogeneic transplantation, when and if needed. The potential therapeutic impact of HUCBC on recovery on neurological function after stroke in the diabetic brain and the corresponding remodeling of the ischemic brain in DM rats opens enormous possibilities. This proposal is highly clinically relevant and if successful, will significantly impact the treatment of diabetic and possibly all stroke patients.

Public Health Relevance Statement:


Public Health Relevance:
Diabetes mellitus (DM) is a severe health problem associated with both microvascular and macrovascular disease and leads to a 3-4 fold higher risk of experiencing ischemic stroke. Efficacious therapies for stroke in the non-DM population do not necessarily transfer to the DM population, prompting the need to develop therapeutic approaches specifically designed to reduce neurological deficits after stroke in the DM population. Our preliminary data show that human umbilical cord blood cell (HUCBC) treatment improves functional outcome after stroke in DM rats. Thus, we propose to develop HUCBC cell-based therapy as a neurorestorative treatment for stroke in the DM population.

Project Terms:
Adult; Adverse effects; Alteplase; angiogenesis; Arteriosclerosis; Attenuated; Autologous Transplantation; Axon; base; blastomere structure; Blood - brain barrier anatomy; Blood Cells; Blood Vessels; Bone Marrow; Brain; Brain hemorrhage; Caliber; Cause of Death; Cell Therapy; Cell Transplants; Cells; Child; clinically relevant; commercialization; cost; Data; design; Diabetes Mellitus; diabetic; Diabetic Angiopathies; diabetic patient; disability; Dose; effective therapy; Electron Microscopy; Ethics; Event; Exhibits; experience; Extravasation; Functional disorder; functional outcomes; glycemic control; Graft Rejection; Graft-vs-Host Disease; Health; high risk; HLA Antigens; Homologous Transplantation; Hour; Human; Hyperglycemia; improved; Incidence; intravenous administration; Ischemic Stroke; Lesion; macrovascular disease; Mature Bone; Medical; Middle Cerebral Artery Occlusion; Mononuclear; Myelin; myelination; Nervous System Physiology; neurofilament; Neurologic; Neuronal Dysfunction; neuroprotection; neurorestoration; Non-Insulin-Dependent Diabetes Mellitus; novel; Patients; Peripheral Blood Stem Cell; Population; public health relevance; Rattus; Recovery; Relative (related person); Risk; Safety; Serum; social; Stem cell transplant; stroke; stroke therapy; Stromal Cells; Testing; Therapeutic; Therapeutic Agents; Therapeutic Effect; Thick; Time; Transplant Recipients; Transplantation; Umbilical Cord Blood; Vascular Endothelial Cell; Vascular Permeabilities; white matter; white matter damage

Phase II

Contract Number: 5R41NS080329-02
Start Date: 3/1/2013    Completed: 2/29/2016
Phase II year
2014
Phase II Amount
$211,473
Diabetes mellitus (DM) leads to a 3-4 fold higher risk of experiencing ischemic stroke. In addition, DM stroke patients are more prone to develop more and earlier white matter (WM) high-intensity lesions than non DM stroke patients. Treatment of stroke with tissue plasminogen activator (rtPA) at 2-3 hours after stroke decreases lesion volume in non-DM rats. However, tPA does not reduce lesion volume nor improve functional outcome, but increases the incidence of brain hemorrhage and blood-brain barrier (BBB) leakage in the ischemic brain of DM rats. In addition, treatment of stroke with bone marrow stromal cells (BMSCs) improves functional outcome in wild-type (WT)-stroke rats but not in DM-stroke rats. Therefore, effective therapy of stroke in the non-DM population may not necessarily transfer to the DM population, prompting the need to develop therapeutic approaches specifically designed to reduce neurological deficits after stroke in the DM population. Human umbilical cord blood cells (HUCBCs) are less mature than bone marrow and can be successfully used even when there is only a half-match. We found that treatment of stroke with HUCBCs starting at 1 or 3 days after middle cerebral artery occlusion (MCAo) improves recovery of neurological function in DM rats. In a novel and clinically relevant approach, based on our robust preliminary data, we therefore, propose to use HUCBCs for the treatment of stroke in the type two DM (T2DM) rats. The following specific aims and associated hypotheses will develop HUCBC as a safe and novel neurorestorative therapy which improves neurological function and reduces WM dysfunction and vascular damage in T2DM rats subjected to MCAo. In Aim 1 will investigate the safety and therapeutic effect of treatment of stroke in T2DM rats with HUCBCs. In addition, we will test the therapeutic effect of combination of HUCBC with tPA in T2DM rats; we will identify any potential adverse effects of tPA on HUCBCs and determine whether HUCBC treatment attenuates tPA induced adverse effects in T2DM rats. In Aim 2, we will elucidate the neurorestorative effect of HUCBC on WM remodeling after stroke in T2DM rats. HUCBCs have great commercialization potential as therapeutic agents, since they are readily available and easy to isolate without serious ethical and technical problems. HUCBCs can be used for autologous transplantation or allogeneic transplantation, when and if needed. The potential therapeutic impact of HUCBC on recovery on neurological function after stroke in the diabetic brain and the corresponding remodeling of the ischemic brain in DM rats opens enormous possibilities. This proposal is highly clinically relevant and if successful, will significantly impact the treatment of diabetic and possibly all stroke patients.

Thesaurus Terms:
Adult;Adverse Effects;Alteplase;Angiogenesis;Arteriosclerosis;Attenuated;Autologous Transplantation;Axon;Base;Blastomere Structure;Blood - Brain Barrier Anatomy;Blood Cells;Blood Vessels;Bone Marrow;Brain;Brain Hemorrhage;Caliber;Cause Of Death;Cell Therapy;Cell Transplants;Cells;Child;Clinically Relevant;Commercialization;Cost;Data;Design;Diabetes Mellitus;Diabetic;Diabetic Patient;Disability;Dose;Effective Therapy;Electron Microscopy;Ethics;Event;Exhibits;Experience;Extravasation;Functional Disorder;Functional Outcomes;Glycemic Control;Graft Rejection;Graft-Vs-Host Disease;Health;High Risk;Hla Antigens;Homologous Transplantation;Hour;Human;Hyperglycemia;Improved;Incidence;Intravenous Administration;Ischemic Stroke;Lesion;Macrovascular Disease;Mature Bone;Medical;Microvascular Dysfunction;Middle Cerebral Artery Occlusion;Mononuclear;Myelin;Myelination;Nervous System Physiology;Neurofilament;Neurologic;Neuronal Dysfunction;Neuroprotection;Neurorestoration;Non-Insulin-Dependent Diabetes Mellitus;Novel;Patients;Peripheral Blood Stem Cell;Population;Public Health Relevance;Rattus;Recovery;Relative (Related Person);Risk;Safety;Serum;Social;Stem Cell Transplant;Stroke;Stroke Therapy;Stromal Cells;Testing;Therapeutic;Therapeutic Agents;Therapeutic Effect;Thick;Time;Transplant Recipients;Transplantation;Umbilical Cord Blood;Vascular Diseases;Vascular Endothelial Cell;Vascular Permeabilities;White Matter;White Matter Damage;