SBIR-STTR Award

Energy-Based Vibration Control System for Load-Bearing Skin Structures
Award last edited on: 4/5/02

Sponsored Program
SBIR
Awarding Agency
DOD : MDA
Total Award Amount
$815,000
Award Phase
2
Solicitation Topic Code
BMDO99-012
Principal Investigator
Daryoush Allaei

Company Information

QRDc Inc (AKA: Quality Research Development & Consulting Inc)

141 North Jonathan Boulevard Suite 150
Chaska, MN 55318
   (952) 556-5205
   info@qrdc.com
   www.qrdc.com
Location: Single
Congr. District: 03
County: Carver

Phase I

Contract Number: DASG60-99-M-0076
Start Date: 5/13/99    Completed: 11/12/99
Phase I year
1999
Phase I Amount
$65,000
The goal of this SBIR project is to develop smart load-bearing skin structures with embedded energy-based hybrid vibration control systems. The proposed vibration control strategy relies on the vibrational energy management concept. The vibration control system will be comprised of both passive and active elements which each will have two functions. The passive elements will be utilized for energy dissipation at high frequencies and energy absorption at resonance frequencies of the skin structure. Constrained layer damping and tunned-mass dampers will be the initial candidates for passive elements during the feasibility study. The active elements will dissipate energy at low frequencies and steer vibrational energy to specified regions at which excess energy can be most effectively absorbed or dissipated by passive or active elements. PZT-based actuators will be the initial candidates for active elements. The proposed smart skin structures will have the capability of steering their excited vibration energy in the most efficient and effective manner in order to minimize the damaging efforts and/or radiated noise of propagating vibrations. In Phase I, the feasibility of the proposed smart load-bearing skin structure will be demonstrated on a flat panel. A computer model will be used to show that is possible to construct a panel with embedded vibrational energy steering capability which is the novel part of our work. Anticipated Benefits and

Potential Commercial Applications:
Smart skin structures have applications in commercial watercraft, aircraft, space vehicles, automobiles, marine systems, machinery, machine tools, and home appliances. A modified version of the proposed smart skin may be used in buildings, bridges, and off-shore oil platforms. An important and large commercial application for the proposed smart skin may be found in manufacturing and processing plants.

Phase II

Contract Number: DASG60-00-C-0077
Start Date: 7/28/00    Completed: 7/27/02
Phase II year
2000
Phase II Amount
$750,000
The goal of this Phase II SBIR project is to design, fabricate, and evaluate a fully functional prototype of EBS3 with embedded energy steering capability suitable for load-bearing skin structure applications. The proposed smart skin will have noise and vibration control strategy that relies on the vibrational energy management concept. The vibration control system will be comprised of both passive and active elements each of which will have two functions. The passive elements will be utilized for energy dissipation at high frequencies and energy absorption at resonance frequencies of a skin structure. Constrained layer damping and tuned-mass dampers will be the initial candidate for passive elements during the feasibility study. The active elements will dissipate energy at low frequencies and steer vibrational energy to specified regions at which excess energy can be most effectively absorbed or dissipated by passive or active elements. PZT-based actuators will be the initial candidates for active elements. The proposed smart skin structures will have the capability of steering their excited vibration energy in the most efficient and effective manner in order to minimize the damaging effects and/or radiated noise of propagating vibrations. A skin structure with embedded vibrational energy steering capability is the novel part of our work.Anticipated Benefits/Commercial Applications: Energy Based Smart Skin Structures have applications in commercial watercraft, aircraft, space vehicles, automobiles, marine systems, machinery, machine tools, and home appliances. A modified version of the proposed smart skin may be used in buildings, bridges, and off-shore oil platforms. An important and large commercial application for the proposed smart skin may be found in manufacturing and processing plants.