SBIR-STTR Award

Pillar and Perfusion Well Plate Platforms for Reproducible Organoid Culture from Ipsc
Award last edited on: 7/14/2021

Sponsored Program
SBIR
Awarding Agency
NIH : NCATS
Total Award Amount
$837,888
Award Phase
2
Solicitation Topic Code
350
Principal Investigator
Pranav Joshi

Company Information

Bioprinting Laboratories Inc

2722 Sinton Place
Pepper Pike, OH 44124
   (216) 687-9399
   bioprintinglabs@gmail.com
   N/A
Location: Single
Congr. District: 11
County: 

Phase I

Contract Number: 1R44TR003491-01
Start Date: 7/15/2020    Completed: 6/30/2022
Phase I year
2020
Phase I Amount
$434,284
There is a critical need for improved in vitro disease modeling to rapidly advance therapeutic drug candidates to preclinical evaluation or to prioritize potential environmental toxicants. Recently, there have been significant advances made in in vitro disease models, including human mini-tissues derived from pluripotent stem cells (PSCs) and progenitor cells (a.k.a., organoid), bioprinted human tissue constructs with cells obtained from patients (a.k.a., 3D bioprinting), and multi-layered cells in microfluidic chips (a.k.a., organ-on-chip). These new and innovative technologies, however, still lack enough throughput and user friendliness to enable rapid identification of high-quality therapeutic candidates, particularly when a disease involves multiple organ interactions. To address these challenges, we propose to leverage our unique “miniature three-dimensional (3D) bioprinting” technology and associated pillar/perfusion plate platforms, including a 384-pillar plate with sidewalls and slits (384PillarPlate) and a clear-bottom, 384-deep well plate (384DeepWellPlate) developed for static organoid culture as well as a 36-pillar plate with sidewalls and slits (36PillarPlate) and a 36- perfusion well plate with reservoirs and microchannels (36PerfusionPlate) for perfusion-based organoid culture. Our proposed pillar/perfusion plate platforms combining “3D bioprinting” with “microfluidic-like” features offer several distinctive advantages over more conventional 3D cell culture models and microfluidic models. In particular, the pillar/perfusion plates are compatible with standard 384-well plates and existing high-throughput screening (HTS) equipment (e.g., automated fluorescence microscopes and microtiter well plate readers) already familiar to users, which will significantly lower barriers to entry for commercialization. In the proposed research, human brain organoids (HBOs) derived from induced pluripotent stem cells (iPSCs) are selected as a model system to develop a predictive assessment tool for developmental neurotoxicity (DNT) by compounds including opioid drugs and alcohol. Our core hypotheses are: (i) bioprinted HBOs on the pillar/perfusion plates can maintain key tissue biomarkers by controlling and mimicking in vivo microenvironments and enable high- throughput, high-content cell function analysis; (ii) HBOs on the pillar/perfusion plates can model the influence of drugs and environmental toxicants to neurodevelopmental disorders. The specific aims of the proposed research are to: (1) improve reproducibility of organoid culture via miniature 3D bioprinting technology; (2) establish in situ whole organoid imaging on a pillar plate for high-throughput, predictive compound screening; (3) establish cryopreservation of organoids on the pillar plate. We envision that bioprinted human organoids on the pillar/perfusion plate platforms can be used as promising disease models for screening therapeutic drugs while minimizing the use of animals in drug discovery processes.

Public Health Relevance Statement:
Project Narrative The proposed research facilitates predictive assessment of compounds including chemicals and drug candidates by creating human organoids on pillar/perfusion plate platforms, including a 384-pillar plate with sidewalls and slits (384PillarPlate) and a clear-bottom, 384-deep well plate (384DeepWellPlate) developed for static organoid culture as well as a 36-pillar plate with sidewalls and slits (36PillarPlate) and a 36-perfusion well plate with reservoirs and microchannels (36PerfusionPlate) for perfusion-based organoid culture. Bioprinted organoids on the pillar/perfusion plate platforms will be used as a promising tool for elucidating mechanisms that underlie human diseases. The outcome of this work may help researchers better predict the in vivo toxicity/efficacy of drug candidates, and thus help to decide which compounds are brought forward for lead optimization and the ultimate development of more efficacious and safer drugs. In addition, this research is relevant to the prioritization of industrial and environmental chemicals in terms of their safety and use.

Project Terms:
3-Dimensional; Address; Adoption; adult stem cell; Alcohols; Animals; Assessment tool; base; biobank; Biological Assay; Biological Models; Biomimetics; bioprinting; Brain; Caliber; Cell Maturation; Cell physiology; cell type; Cells; Chemicals; Clinical Trials; cold temperature; commercialization; Complex; Cryopreservation; Cryoultramicrotomy; density; Development; developmental neurotoxicity; Diffusion; Disease; Disease model; Dissociation; Dose; drug candidate; drug discovery; drug efficacy; Drug Kinetics; efficacy study; environmental chemical; Equipment; Ethanol; Fentanyl; fluorescence microscope; frontier; Funding; Gene Expression; Goals; Grant; high throughput screening; Human; human disease; human tissue; Hydrogels; Image; Image Analysis; improved; In Situ; In Vitro; in vivo; induced pluripotent stem cell; Industrialization; Industry; Injections; innovative technologies; Intervention; Intestines; Kidney; Laboratories; lead optimization; Lentivirus Vector; Liquid substance; Liver; Lung; Mammalian Cell; Manuals; matrigel; Measures; Mesenchymal; Methods; Microfluidic Microchips; Microfluidics; Modeling; Molds; Molecular; Monitor; Morphology; Neurodevelopmental Disorder; new technology; Nitrogen; Non-Insulin-Dependent Diabetes Mellitus; Nutrient; Ohio; Opioid; opioid use; Organ; organ on a chip; Organoids; Outcome; Oxygen; Pancreas; Patients; Perfusion; Pharmaceutical Preparations; Pluripotent Stem Cells; Polystyrenes; Population; preclinical evaluation; Printing; Process; Protocols documentation; Reader; Reporter; Reporter Genes; Reproducibility; Research; Research Personnel; RNA analysis; Robotics; Safety; screening; specific biomarkers; Stains; stem cells; Technology; technology validation; Testing; Therapeutic; therapeutic candidate; three dimensional cell culture; Time; tissue biomarkers; Tissues; tool; Toxic effect; Toxic Environmental Substances; transcriptome sequencing; United States National Institutes of Health; user-friendly; Variant; Viscosity; Work

Phase II

Contract Number: 5R44TR003491-02
Start Date: 7/15/2020    Completed: 6/30/2023
Phase II year
2021
Phase II Amount
$403,604
There is a critical need for improved in vitro disease modeling to rapidly advance therapeutic drug candidates to preclinical evaluation or to prioritize potential environmental toxicants. Recently, there have been significant advances made in in vitro disease models, including human mini-tissues derived from pluripotent stem cells (PSCs) and progenitor cells (a.k.a., organoid), bioprinted human tissue constructs with cells obtained from patients (a.k.a., 3D bioprinting), and multi-layered cells in microfluidic chips (a.k.a., organ-on-chip). These new and innovative technologies, however, still lack enough throughput and user friendliness to enable rapid identification of high-quality therapeutic candidates, particularly when a disease involves multiple organ interactions. To address these challenges, we propose to leverage our unique “miniature three-dimensional (3D) bioprinting” technology and associated pillar/perfusion plate platforms, including a 384-pillar plate with sidewalls and slits (384PillarPlate) and a clear-bottom, 384-deep well plate (384DeepWellPlate) developed for static organoid culture as well as a 36-pillar plate with sidewalls and slits (36PillarPlate) and a 36- perfusion well plate with reservoirs and microchannels (36PerfusionPlate) for perfusion-based organoid culture. Our proposed pillar/perfusion plate platforms combining “3D bioprinting” with “microfluidic-like” features offer several distinctive advantages over more conventional 3D cell culture models and microfluidic models. In particular, the pillar/perfusion plates are compatible with standard 384-well plates and existing high-throughput screening (HTS) equipment (e.g., automated fluorescence microscopes and microtiter well plate readers) already familiar to users, which will significantly lower barriers to entry for commercialization. In the proposed research, human brain organoids (HBOs) derived from induced pluripotent stem cells (iPSCs) are selected as a model system to develop a predictive assessment tool for developmental neurotoxicity (DNT) by compounds including opioid drugs and alcohol. Our core hypotheses are: (i) bioprinted HBOs on the pillar/perfusion plates can maintain key tissue biomarkers by controlling and mimicking in vivo microenvironments and enable high- throughput, high-content cell function analysis; (ii) HBOs on the pillar/perfusion plates can model the influence of drugs and environmental toxicants to neurodevelopmental disorders. The specific aims of the proposed research are to: (1) improve reproducibility of organoid culture via miniature 3D bioprinting technology; (2) establish in situ whole organoid imaging on a pillar plate for high-throughput, predictive compound screening; (3) establish cryopreservation of organoids on the pillar plate. We envision that bioprinted human organoids on the pillar/perfusion plate platforms can be used as promising disease models for screening therapeutic drugs while minimizing the use of animals in drug discovery processes.Project NarrativeThe proposed research facilitates predictive assessment of compounds including chemicals and drug candidates by creating human organoids on pillar/perfusion plate platforms, including a 384-pillar plate with sidewalls and slits (384PillarPlate) and a clear-bottom, 384-deep well plate (384DeepWellPlate) developed for static organoid culture as well as a 36-pillar plate with sidewalls and slits (36PillarPlate) and a 36-perfusion well plate with reservoirs and microchannels (36PerfusionPlate) for perfusion-based organoid culture. Bioprinted organoids on the pillar/perfusion plate platforms will be used as a promising tool for elucidating mechanisms that underlie human diseases. The outcome of this work may help researchers better predict the in vivo toxicity/efficacy of drug candidates, and thus help to decide which compounds are brought forward for lead optimization and the ultimate development of more efficacious and safer drugs. In addition, this research is relevant to the prioritization of industrial and environmental chemicals in terms of their safety and use.