SBIR-STTR Award

Satellite Optical Backplane
Award last edited on: 10/19/2015

Sponsored Program
SBIR
Awarding Agency
DOD : AF
Total Award Amount
$849,977
Award Phase
2
Solicitation Topic Code
AF103-097
Principal Investigator
Ahmed S Sharkawy

Company Information

EM Photonics Inc (AKA: EE Solutions LLC~Lumilant Inc)

51 East Main Street Suite 203
Newark, DE 19711
   (302) 456-9003
   info@emphotonics.com
   www.emphotonics.com
Location: Single
Congr. District: 00
County: New Castle

Phase I

Contract Number: ----------
Start Date: ----    Completed: ----
Phase I year
2011
Phase I Amount
$99,995
Optical interconnects are the natural choice for interconnecting different chips when current interconnect technologies cannot fulfill current and future system requirements. Examples of optical interconnect architectures are free-space multistage interconnect, optical fiber interconnect, and thin film polymer waveguide-based optical interconnect. While all these architectures were successfully capable of satisfying the requirements for an optically interconnected system, the size they occupy is considerably large to be integrated on a chip-level optical system, especially with the minimum feature size of chip shrinking one year after the other. Nano-scale optical interconnects are now needed to satisfy future interconnect needs, since they will not only meet system requirements but will also occupy a size comparable to the interconnected chips. Typical Avionics Networks Requirements include; Many Different I/O Types,- RF, Analog, Digital, Discrete & Timing Strobes,- EMI Problems in Mixed Signal Environment, Many Different Network Media / Connectors Coaxial, TSP, Copper Cable, F/O, Backplane Traces/Vias, Many High Bandwidth/High Frequency Channels Avionics Modules are Connector Bound, Still Desire 2-Level Line-Replaceable Modules, Sensors Located Throughout Airframe, Coaxial Cable Has High Signal Losses/Distortion, Many Pt-to-Pt Cables Reduce Manufacturing Repeatability, Decrease Reliability/Effective Diagnostics. What is needed is a common network that can satisfy all connectivity requirements of an avionics suite, single channel, and single connector. Chip-Scale optical switching fabric can provide this universal avionics network if specific component, cost & packaging challenges can be overcome!

Benefit:
We intend to market a product based on the final device as part of the STTR program. We anticipate our initial market to be government and military applications but we will secondarily bring the final product to the commercial market. There are many groups that will benefit from this technology including the DoD, satellite TV and radio broadcasters, and private space companies. This platform will be useful in military applications ranging from communications to missile guidance to long-range imaging. Additionally, we believe that this device will convince more people to utilize the proposed chip-scale switch fabric in their designs, as this novel platform will greatly improve performance and open the door for many new applications.

Keywords:
Optical Switch, Photonic Crystal, Routing, Self Collimation, Electro-Optic Modulator, Slow Light, Reconfigurable Computing

Phase II

Contract Number: ----------
Start Date: ----    Completed: ----
Phase II year
2013
Phase II Amount
$749,982
There is a clear need for a radically new interconnect architecture that minimizes the routing delay through the backplane to enable increased performance, reduced costs, and faster time to market. To this end, we propose the development of a space compatible optically interconnected backplane with reconfigurable routing fabric. By removing the electrical interconnections between logic blocks, data can be quickly and efficiently routed across the backplane. Such a novel design will remove the routing bottleneck associated with existing architectures and enable the rapid development of high data rate optical backplane for space communication systems. The use of a wavelength-division-multiplexing (WDM)-based optical backplane communication system allows for better utilization of the spectral bandwidth resources available to the system. Along these lines, WDM systems have been proposed using many kinds of technology such as: planar light-wave-circuit (PLC)-based array waveguide gratings (AWG) and fiber gratings. However, such technologies typically have sizes on the order of centimeters, in order to support a large number of sufficiently spaced wavelength channels. Alternatively, a radical new WDM architecture that is Size, Weight and Power (SWaP) compatible with miniaturized commercial applications, avionic applications, and satellite and place platforms is urgently needed.

Benefit:
The ability to integrate photonic functions into a chip to reduce overall chip size will enable the development of next generation photonic integrated circuits and will advance research in various DoD areas including; physics, materials, devices and photonic integrated circuits, processing and chip architecture – particularly for Intelligence, Surveillance, Reconnaissance (ISR), National Missile defense (NMD) and communication mission areas. Realization of a reconfigurable optically interconnected chip would meet the requirements for the majority of the DoD programs; including all optical switching on a chip, multistage tunable wavelength converters and multiplexers, all optical push-pull converters, compact beamsteering, very fine pointing, tracking, and stabilization control; and ultra-lightweight antennas and eventually pave the path towards an optically interconnected routing chip.

Keywords:
Satellite Optical Backplane, Wdm, Radiation Harden, Swap, Embedded Optical Wavguides, Optical Networks, Optical Router