SBIR-STTR Award

Gaseous Helium Reclamation at Rocket Test Systems
Award last edited on: 1/16/2015

Sponsored Program
STTR
Awarding Agency
NASA : SSC
Total Award Amount
$699,938
Award Phase
2
Solicitation Topic Code
-----

Principal Investigator
Mark S Haberbusch

Company Information

Sierra Lobo Inc

102 Pinnacle Drive
Fremont, OH 43420
   (419) 332-7101
   howl@sierralobo.com
   www.sierralobo.com

Research Institution

----------

Phase I

Contract Number: ----------
Start Date: ----    Completed: ----
Phase I year
2010
Phase I Amount
$100,000
The ability to restore large amounts of vented gaseous helium (GHe) at rocket test sites preserves the GHe and reduces operating cost. The used GHe is vented into the atmosphere, is non-recoverable, and costs NASA millions dollars per year. Helium, which is non-renewable and irreplaceable once released into the atmosphere, is continuously consumed by rocket test facilities at NASA centers such as KSC, SSC, and CCAFS at a rate of more than 6.6 Mscf per year. This use is projected to increase to more than 10 Mscf by the year 2018, assuming the same inefficient and costly operating procedures and facilities continue to be used. Given the decrease in the world's supply of helium, NASA is heading toward to an economic, operational, and programmatic disaster. New and highly innovative approaches are required to drive down launch operation life cycle costs. Scaling-up of existing systems to meet an increased demand of helium is not an option. Our team, Sierra Lobo, Inc. and University of Hawaii at Manao, proposes the use of PEM fuel cells to remove most of the impure oxygen and hydrogen in the helium gas stream. The small traces of oxygen and hydrogen impurities in the GHe will be removed by cryo-separation using commercial cryocoolers.

Phase II

Contract Number: ----------
Start Date: ----    Completed: ----
Phase II year
2011
Phase II Amount
$599,938
GHe reclamation is critical in reducing operating costs at rocket engine test facilities. Increases in cost and shortages of helium will dramatically impact testing of rocket engines for launch vehicles and space propulsion systems as the global supply of this non-renewable element diminishes. Extremely large quantities of helium are being used during rocket engine testing each year at various test facilities. It is critical for program successes to minimize developmental and testing costs by reclaiming helium utilized in those programs and, equally important, to preserve this rare element for future generations. Phase I innovative solution efforts have proven the effectiveness of utilizing hydrogen (H2) Proton Exchange Membrane Electrochemical Cell (PEMEC) technology to purify an inert gas stream of helium (He) consisting of hydrogen contaminants in a cost-effective manner. This method allows in-situ, on-site helium re-utilization, returning the helium to cleanliness standards required for rocket engine test facility use. Phase I identified the challenges for dilute hydrogen operation of the PEMEC and provided viable solutions for improved efficiency, which allows the PEMEC's to provide high purity, 99.995% helium. Phase I also identified a possible configuration in which the exit stream of H2 can be added to a fuel cell operating in the galvanic mode to provide power back to the GHe reclamation system. Although Phase II efforts will not utilize that configuration, Phase I verified its feasibility and future system growth potential. Phase II efforts will build upon all the results of Phase I to deliver a fully functional prototype system for further evaluation in an operational environment. Technology Readiness Level (TRL) at the end of Phase I was five (5), while phase II will progress that level to six (6): System/subsystem model or prototype demonstration in a relevant environment.