SBIR-STTR Award

IPPM:In-Line Piercing Process Monitoring for Seamless Tube Manufacturing
Award last edited on: 12/28/2023

Sponsored Program
SBIR
Awarding Agency
NSF
Total Award Amount
$700,000
Award Phase
2
Solicitation Topic Code
NM
Principal Investigator
Tzyy-Shuh Chang

Company Information

OG Technologies Inc

4300 Varsity Drive Suite C
Ann Arbor, MI 48108
   (734) 973-7500
   sales@ogtechnologies.com
   www.ogtechnology.com
Location: Single
Congr. District: 12
County: Washtenaw

Phase I

Contract Number: 0944614
Start Date: 1/1/2010    Completed: 6/30/2010
Phase I year
2009
Phase I Amount
$150,000
This Small Business Innovation Research (SBIR) Phase I project seeks to verify the feasibility of an imaging based monitoring system for the piercing process used in the manufacturing of seamless steel tubes. Piercing is the core process of seamless tubes manufacturing, the process that puts a hole in a steel bar without drilling chips. Seamless tubes are crucial materials in many critical applications ranging from energy, chemical, automotive, aerospace to infrastructure. Piercing, if not done correctly, could cause tube quality issues. The proposed innovation consists of a set of imaging sensors for measuring the part vibrations in the piercing process. The vibration data will be used to derive the piercing conditions for critical failure modes through advanced mathematical analysis. This project is expected to validate the new approach on selected tubes, forming the basis for the commercialization of a new piercing monitoring system. This project will be carried out by a team consisting of industry-academia collaboration. Tests in a tube mill are planned for performance verification. The broader impact/commercial potential of this project is very significant. This project presents an approach with soft as well as hard sensors to control a highly stochastic and non-linear process. When commercialized, it will improve seamless steel tubing manufacturing by reducing mill downtime, fewer set-up pieces, and tightened tolerances. This project also reduces the pollution emissions and costly energy consumption associated with remanufacturing or reworking out-of-tolerance products. Industry-wide adoption across the seamless tube and pipe industry could yield drastic reductions in waste byproducts and would produce a cost savings of $250 million per year. Scientifically, the project could have an impact on the adoption of emerging high dimensional data analysis techniques. The project carries strong educational implication due to the close working relationship with the academia. Social impact is also expected with this project, by improving energy preservation and environmental protection. The estimated benefits include energy savings of 3 terawatt-hours and reduction of 300,000 tons of carbon-equivalent emission and 260,000 tons of toxic waste per year. Beyond the piercing process, the success of the project will also provide generic modeling and analysis tools for systems with complex information

Phase II

Contract Number: 1058237
Start Date: 1/15/2011    Completed: 6/30/2013
Phase II year
2011
(last award dollars: 2012)
Phase II Amount
$550,000

This Small Business Innovation Research Phase II project proposes to develop an imaging based monitoring system for the piercing process used in the manufacturing of seamless steel tubes based on the feasibility proven in Phase I. Piercing is the core process of the near net-shape manufacturing process for seamless tubes, which are crucial materials in many critical applications ranging from energy to chemical, automotive, aerospace, and infrastructure. However, being the primary cause for tube wall variations and internal surface quality issues,piercing is rarely investigated due to the lack of proper sensing means. There is a need to improve the piercing process efficiency for higher product quality and lower costs with new sensors. The proposed innovation consists of a set of imaging sensors for measuring the vibrations of the part being pierced. The vibration signals are used for system conditions monitoring for the detection of critical failure modes. The new approach was validated on selected tubes. Further development is proposed to support the commercialization of a new piercing-monitoring system. This project will be carried out by a team of industry-academia collaboration in 24 months. A site-tested prototype will be delivered. The broader impact/commercial potential of this project is substantial. This project represents a unique approach of multi-model sensor fusion to controlling a highly stochastic and non-linear process. If commercialized, it may improve seamless steel tubing manufacture through reduced mill downtime, fewer setup pieces, and tightened tolerances, thereby reducing the pollution emissions and costly energy consumption associated with remanufacturing or reworking out-oftolerance products. Industry-wide adoption in the tube industry could yield drastic reductions in waste byproducts and cost savings of $250 million per year. Scientifically, the proposed research could have an impact on the adoption of emerging high dimensional data analysis techniques. The proposed project carries strong educational implication due to the close working relationship with the academia. Social impact is also expected with this project in improved energy preservation and environmental protection. The estimated benefits include energy savings of 3 terawatt-hours and reduction of 300,000 tons of carbon-equivalent emission and 260,000 tons of toxic waste per year. The estimated market size for the proposed iPPM system is $15 million in the US and $200 million globally. Beyond the piercing process, the success of the project will also provide generic modeling and analysis tools for systems with complex information