SBIR-STTR Award

NanoIR: Infrared Chemical Spectroscopy at the sub-20 nm Scale
Award last edited on: 10/25/2011

Sponsored Program
SBIR
Awarding Agency
NSF
Total Award Amount
$934,885
Award Phase
2
Solicitation Topic Code
-----

Principal Investigator
Craig Prater

Company Information

Anasys Instruments Corporation

325 Chapala Street
Santa Barbara, CA 93101
   (805) 730-3310
   kevin@anasysinstruments.com
   www.anasysinstruments.com
Location: Single
Congr. District: 24
County: Santa Barbara

Phase I

Contract Number: ----------
Start Date: ----    Completed: ----
Phase I year
2009
Phase I Amount
$150,000
This Small Business Innovation Research Phase I project will explore new science and technology to enable infrared (IR) spectroscopy and imaging with sub-20 nm spatial resolution. Conventional IR spectroscopy is a benchmark tool in research and industry, providing rich chemically specific information. Due to optical diffraction limits, the resolution of conventional IR spectroscopy is limited to a few microns, preventing its broad application to nanoscale research and development. This project aims to dramatically surpass the current resolution limits using an innovative, patent-pending probe based technique to measure IR absorption below the diffraction limit. Leveraging prior investments in nanoscale IR spectroscopy, the team will establish the feasibility of improving spatial resolution and sensitivity by a factor of ten over previous work (and a factor of 250 versus commercial IR microscopy). To achieve these goals, the project team will develop high-sensitivity nanoscale probes, ultrasensitive detection electronics and sophisticated data analysis algorithms to extend IR spectroscopy to the sub-20 nm length scale. The resolution and sensitivity breakthroughs will enable new solutions to a broad range of scientifically and commercially critical problems as outlined below. The broader impact/commercial potential of this project will be dramatically improved resolution of infrared (IR) spectroscopy, which is the most widely used analytical technique for chemical characterization and identification, and which constitutes a $1 billion industry. Infrared absorption spectra give critical information about molecular structure and have led to broad adoption of IR spectroscopy in diverse fields. The increasing global emphasis on nanoscience and nanotechnology has led to a growing need to design, characterize, and manufacture complex materials with physical and chemical structures on the sub-100 nm length scale. The resolution limits of conventional IR spectroscopy have left business and research communities lacking critical characterization capabilities for making nanoscale chemical measurements. Filling this critical gap in the characterization toolset will substantially accelerate the rate of technological and commercial advances in fields which depend on chemical analysis and imaging at the nanoscale. Research has indicated that the broadest adoption of nanoscale IR will occur when the resolution reaches the sub-20 nm range. Availability of nanoscale IR spectroscopy will have dramatic impacts on materials development and basic research. Critical applications include characterization of polymer blends, multilayer thin films, photovoltaics and solar cells, organic LEDs, pharmaceuticals and life sciences, and biofuels research

Phase II

Contract Number: ----------
Start Date: ----    Completed: ----
Phase II year
2011
(last award dollars: 2014)
Phase II Amount
$784,885

This Small Business Innovation Research (SBIR) Phase II project will involve research and development of infrared nanospectroscopy, leading to the first commercial instrument capable of infrared spectroscopy and chemical imaging at the sub-20 nm scale on a broad range of samples. We will develop and demonstrate key technologies to dramatically improve the resolution and sensitivity of atomic force microscope-based infrared spectroscopy (AFM-IR). Conventional infrared spectroscopy is the most widely used technique for chemical characterization, but fundamental limits prevent it from being applied at the nanoscale. The AFM has excellent spatial resolution, but until recently had no ability to perform chemical spectroscopy. AFM-IR has demonstrated infrared spectroscopy at well below conventional diffraction limits, but the current spatial resolution and sensitivity are on the order of 100-200 nm, and the method requires specialized sample preparation. This effort will expand on successful Phase I research to develop a robust instrument for obtaining high-resolution chemical spectra on a wide variety of samples with minimal sample preparation. This project will combine simulations with development of experimental techniques and prototype instrumentation to enable commercialization of infrared spectroscopy and chemical imaging down to the scale of single monolayers and individual molecules. The broader impact/commercial potential of this project will be to give researchers a robust capability to leverage the power of infrared spectroscopy over broad wavelength ranges and at resolution scales well below current limits. Infrared spectroscopy is arguably the most widely used technique for chemical characterization, but spatial resolution limits have prevented it from being widely applied at the nanoscale. With billions of dollars of global investments in nanoscience and nanotechnology, the lack of IR nanospectroscopy technology leaves an enormous gap in needed characterization capabilities. The novel AFM-IR platform will enable a wide range of high-resolution characterization methodologies in materials science and life sciences including correlation of morphological, chemical, mechanical and optical properties. Based on specific early customer measurement requests, we anticipate significant downstream benefits in areas including the development of block co-polymers, advanced polymer nanocomposites, functional nanostructures, catalysts, materials for energy generation and storage, and many other areas